Enhanced electrochemical performance of MoS2 anode material with novel composite binder


A simple and green approach for creating a highly capacitive molybdenum disulphide (MoS2) anode material for lithium-ion batteries is proposed. The electrode composition consists of MoS2 and conductive water-based binder PEDOT:PSS/CMC (poly(3,4-ethylenedioxythiophene)/poly(styrenesulphonate)/carboxymethyl cellulose). The electrochemical performance of modified electrodes is markedly superior to those with conventional PVDF (polyvinylidene fluoride) and carbon black composition. The electrode provides initial capacity of 1090 mA h g−1 at 0.1 mA g−1, maintains 410 mA h g−1 at 2 mA g−1 and retains 78% of initial capacity after 100 charge-discharge cycles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. 1.

    Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional Nanomaterials. Chem Rev 117(9):6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Liu J, Liu XW (2012) Two-dimensional nanoarchitectures for lithium storage. Adv Mater 24(30):4097–4111. https://doi.org/10.1002/adma.201104993

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Guo S-P, Li J-C, Xiao J-R, Xue H-G (2017) Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: outstanding cyclic and rate performance. ACS Appl Mater Interfaces 9(43):37694–37701. https://doi.org/10.1021/acsami.7b10406

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Xu Q-T, Li J-C, Xue H-G, Guo S-P (2018) Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. J Power Sources 396:675–682. https://doi.org/10.1016/j.jpowsour.2018.06.088

    CAS  Article  Google Scholar 

  5. 5.

    Jiao Y, Hafez AM, Cao D, Mukhopadhyay A, Ma Y, Zhu H (2018) Metallic MoS2 for high performance energy storage and energy conversion. Small 14(36):1800640. https://doi.org/10.1002/smll.201800640

    CAS  Article  Google Scholar 

  6. 6.

    Wu J, Ciucci F, Kim J (2020) Molybdenum disulfide based nanomaterials for rechargeable batteries. Chem Eur J 26(29):6296–6319. https://doi.org/10.1002/chem.201905524

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7(1):209–231. https://doi.org/10.1039/c3ee42591f

    CAS  Article  Google Scholar 

  8. 8.

    Jiang H, Ren D, Wang H, Hu Y, Guo S, Yuan H, Hu P, Zhang L, Li C (2015) 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater 27(24):3687–3695. https://doi.org/10.1002/adma.201501059

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wang G, Zhang J, Yang S, Wang F, Zhuang X, Müllen K, Feng X (2018) Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv Energy Mater 8(8):1–8. https://doi.org/10.1002/aenm.201702254

    CAS  Article  Google Scholar 

  10. 10.

    Jiao Y, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu H (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 8(15):1702779. https://doi.org/10.1002/aenm.201702779

    CAS  Article  Google Scholar 

  11. 11.

    Zhang L, Sun D, Kang J, Feng J, Bechtel HA, Wang LW, Cairns EJ, Guo J (2018) Electrochemical reaction mechanism of the MoS2 electrode in a lithium-ion cell revealed by in situ and operando X-ray absorption spectroscopy. Nano Lett 18(2):1466–1475. https://doi.org/10.1021/acs.nanolett.7b05246

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wan J, Bao W, Liu Y, Dai J, Shen F, Zhou L, Cai X, Urban D, Li Y, Jungjohann K, Fuhrer MS, Hu L (2015) In situ investigations of Li-MoS2 with planar batteries. Adv Energy Mater 5(5):1401742. https://doi.org/10.1002/aenm.201401742

    CAS  Article  Google Scholar 

  13. 13.

    Wang M, Li G, Xu H, Qian Y, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5(3):1003–1008. https://doi.org/10.1021/am3026954

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Xiao J, Wang X, Yang XQ, Xun S, Liu G, Koech PK, Liu J, Lemmon JP (2011) Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium. Adv Funct Mater 21(15):2840–2846. https://doi.org/10.1002/adfm.201002752

    CAS  Article  Google Scholar 

  15. 15.

    Wu C, Ou JZ, He F, Ding J, Luo W, Wu M, Zhang H (2019) Three-dimensional MoS2/carbon sandwiched architecture for boosted lithium storage capability. Nano Energy 65:104061. https://doi.org/10.1016/j.nanoen.2019.104061

    CAS  Article  Google Scholar 

  16. 16.

    Zhu C, Mu X, van Aken PA, Maier J, Yu Y (2015) Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv Energy Mater 5(4):1401170. https://doi.org/10.1002/aenm.201401170

    CAS  Article  Google Scholar 

  17. 17.

    Ding S, Chen JS, Lou XW (2011) Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. Chem Eur J 17(47):13142–13145. https://doi.org/10.1002/chem.201102480

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zhong Y, Shi T, Huang Y, Cheng S, Chen C, Liao G, Tang Z (2019) Three-dimensional MoS2/graphene aerogel as binder-free electrode for Li-ion battery. Nanoscale Res Lett 14(1):85. https://doi.org/10.1186/s11671-019-2916-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Xie D, Zhang M, Cheng F, Fan H, Xie S, Liu P, Tu J (2018) Hierarchical MoS2@Polypyrrole core-shell microspheres with enhanced electrochemical performances for lithium storage. Electrochim Acta 269:632–639. https://doi.org/10.1016/j.electacta.2018.03.068

    CAS  Article  Google Scholar 

  20. 20.

    Hu L, Ren Y, Yang H, Xu Q (2014) Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl Mater Interfaces 6(16):14644–14652. https://doi.org/10.1021/am503995s

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ge Y, Jalili R, Wang C, Zheng T, Chao Y, Wallace GG (2017) A robust free-standing MoS2/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) film for supercapacitor applications. Electrochim Acta 235:348–355. https://doi.org/10.1016/j.electacta.2017.03.069

    CAS  Article  Google Scholar 

  22. 22.

    Khoh W-H, Wee B-H, Hong J-D (2019) High performance flexible solid-state asymmetric supercapacitor composed of a polyaniline/PEDOT/polyaniline/ultralarge reduced graphene oxide tetralayer film and a PEDOT/MoS2 composite film. Colloids Surf A Physicochem Eng Asp 581:123815. https://doi.org/10.1016/j.colsurfa.2019.123815

    CAS  Article  Google Scholar 

  23. 23.

    Song D, Li M, Jiang Y, Chen Z, Bai F, Li Y, Jiang B (2014) Facile fabrication of MoS2/PEDOT-PSS composites as low-cost and efficient counter electrodes for dye-sensitized solar cells. J Photochem Photobiol A Chem 279:47–51. https://doi.org/10.1016/j.jphotochem.2014.01.009

    CAS  Article  Google Scholar 

  24. 24.

    Zhao X, Mai Y, Luo H, Tang D, Lee B, Huang C, Zhang L (2014) Nano-MoS2/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode. Appl Surf Sci 288:736–741. https://doi.org/10.1016/j.apsusc.2013.10.142

    CAS  Article  Google Scholar 

  25. 25.

    Apraksin RV, Eliseeva SN, Tolstopjatova EG, Rumyantsev AM, Zhdanov VV, Kondratiev VV (2016) High-rate performance of LiFe0.4Mn0.6PO4 cathode materials with poly(3,4-ethylenedioxythiopene):poly(styrene sulfonate)/carboxymethylcellulose. Mater Lett 176:248–252. https://doi.org/10.1016/j.matlet.2016.04.106

  26. 26.

    Eliseeva SN, Shkreba EV, Kamenskii MA, Tolstopjatova EG, Holze R, Kondratiev VV (2019) Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ionics 333:18–29. https://doi.org/10.1016/j.ssi.2019.01.011

    CAS  Article  Google Scholar 

  27. 27.

    Joensen P, Crozier ED, Alberding NA, Frindt RF (1987) A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J Phys C Solid State Phys 20(26):4043–4053. https://doi.org/10.1088/0022-3719/20/26/009

    CAS  Article  Google Scholar 

  28. 28.

    Greczynski G, Kugler T, Keil M, Osikowicz W, Fahlman M, Salaneck WR (2001) Photoelectron spectroscopy of thin films of PEDOT-PSS conjugated polymer blend: a mini-review and some new results. J Electron Spectrosc Relat Phenom 121(1-3):1–17. https://doi.org/10.1016/S0368-2048(01)00323-1

    CAS  Article  Google Scholar 

  29. 29.

    Li J, Hou Y, Gao X, Guan D, Xie Y, Chen J, Yuan C (2015) A three-dimensionally interconnected carbon nanotube/layered MoS2 nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life. Nano Energy 16:10–18. https://doi.org/10.1016/j.nanoen.2015.05.025

    CAS  Article  Google Scholar 

  30. 30.

    Du G, Guo Z, Wang S et al (2010) Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun 46(7):1106–1108. https://doi.org/10.1039/b920277c

    CAS  Article  Google Scholar 

  31. 31.

    Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728. https://doi.org/10.1021/nn200659w

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zhu Z, Tang Y, Lv Z, Wei J, Zhang Y, Wang R, Zhang W, Xia H, Ge M, Chen X (2018) Fluoroethylene carbonate enabling a robust LiF-rich solid electrolyte interphase to enhance the stability of the MoS2 anode for lithium-ion storage. Angew Chem Int Ed 57(14):3656–3660. https://doi.org/10.1002/anie.201712907

    CAS  Article  Google Scholar 

  33. 33.

    Li X, Zai J, Xiang S, Liu Y, He X, Xu Z, Wang K, Ma Z, Qian X (2016) Regeneration of metal sulfides in the delithiation process: the key to cyclic stability. Adv Energy Mater 6(19):1601056. https://doi.org/10.1002/aenm.201601056

    CAS  Article  Google Scholar 

  34. 34.

    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11(11):4826–4830. https://doi.org/10.1021/nl202675f

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Teng Y, Mo M, Lv P (2017) MoS2 nanosheets grown on N-doped carbon micro-tubes derived from willow catkins as a high-performance anode material for lithium-ion batteries. Mater Lett 209:396–399. https://doi.org/10.1016/j.matlet.2017.08.060

    CAS  Article  Google Scholar 

  36. 36.

    Shi Y, Wang Y, Wong JI, Tan AYS, Hsu CL, Li LJ, Lu YC, Yang HY (2013) Self-assembly of hierarchical MoSx/CNT nanocomposites (2<x<3): towards high performance anode materials for lithium ion batteries. Sci Rep 3(1):2169. https://doi.org/10.1038/srep02169

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Yu S, Zachman MJ, Kang K et al (2019) Atomic-scale visualization of electrochemical lithiation processes in monolayer MoS2 by cryogenic electron microscopy. Adv Energy Mater 9(47):1902773. https://doi.org/10.1002/aenm.201902773

    CAS  Article  Google Scholar 

  38. 38.

    Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, du X, du Z, Lv P, Świerczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10(9):8526–8535. https://doi.org/10.1021/acsnano.6b03683

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Huang M, Chen H, He J, An B, Sun L, Li Y, Ren X, Deng L, Zhang P (2019) Ultra small few layer MoS2 embedded into three-dimensional macro-micro-mesoporous carbon as a high performance lithium ion batteries anode with superior lithium storage capacity. Electrochim Acta 317:638–647. https://doi.org/10.1016/j.electacta.2019.06.025

    CAS  Article  Google Scholar 

  40. 40.

    Park SK, Yu SH, Woo S, Quan B, Lee DC, Kim MK, Sung YE, Piao Y (2013) A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. Dalton Trans 42(7):2399–2405. https://doi.org/10.1039/c2dt32137h

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Li H, Sun M, Zhang T, Fang Y, Wang G (2014) Improving the performance of PEDOT-PSS coated sulfur@activated porous graphene composite cathodes for lithium-sulfur batteries. J Mater Chem A 2(43):18345–18352. https://doi.org/10.1039/c4ta03366c

    CAS  Article  Google Scholar 

  42. 42.

    Xu Q-T, Xue H-G, Guo S-P (2018) FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Electrochim Acta 292:1–9. https://doi.org/10.1016/j.electacta.2018.09.135

    CAS  Article  Google Scholar 

  43. 43.

    Sun D, Huang D, Wang H, Xu GL, Zhang X, Zhang R, Tang Y, Abd EI-Hady D, Alshitari W, Saad al-Bogami A, Amine K, Shao M (2019) 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61:361–369. https://doi.org/10.1016/j.nanoen.2019.04.063

    CAS  Article  Google Scholar 

  44. 44.

    Zhong Y, Zhuang Q, Mao C, Xu Z, Guo Z, Li G (2018) Vapor phase sulfurization synthesis of interlayer-expanded MoS2@C hollow nanospheres as a robust anode material for lithium-ion batteries. J Alloys Compd 745:8–15. https://doi.org/10.1016/j.jallcom.2018.02.163

    CAS  Article  Google Scholar 

  45. 45.

    Rui X, Tan H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6(17):9889–9924. https://doi.org/10.1039/c4nr03057e

    CAS  Article  Google Scholar 

  46. 46.

    Shu H, Li F, Hu C, Liang P, Cao D, Chen X (2016) The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 8(5):2918–2926. https://doi.org/10.1039/c5nr07909h

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Zhao G, Cheng Y, Sun P, Ma W, Hao S, Wang X, Xu X, Xu Q, Liu M (2020) Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors. Electrochim Acta 331:135262. https://doi.org/10.1016/j.electacta.2019.135262

    CAS  Article  Google Scholar 

  48. 48.

    Kang J, Feng H, Huang P, Su Q, Dong S, Jiao W, Chen X, du G, Yu Y, Xu B (2019) Carbon cloth decorated with MoS2 microflowers as flexible binder-free anodes for lithium and sodium storage. Energy Technol 7(5):1801086. https://doi.org/10.1002/ente.201801086

    CAS  Article  Google Scholar 

  49. 49.

    Chen X, Li L, Wang S, Feng C, Guo Z (2016) Synthesis and electrochemical performances of MoS2 /C fibers as anode material for lithium-ion battery. Mater Lett 164:595–598. https://doi.org/10.1016/j.matlet.2015.11.079

    CAS  Article  Google Scholar 

  50. 50.

    Wang Y, Ma Z, Chen Y, Zou M, Yousaf M, Yang Y, Yang L, Cao A, Han RPS (2016) Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv Mater 28(46):10175–10181. https://doi.org/10.1002/adma.201603812

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Li Z, Ottmann A, Zhang T, Sun Q, Meyer HP, Vaynzof Y, Xiang J, Klingeler R (2017) Preparation of hierarchical C@MoS2@C sandwiched hollow spheres for lithium ion batteries. J Mater Chem A 5(8):3987–3994. https://doi.org/10.1039/C6TA10439H

    CAS  Article  Google Scholar 

  52. 52.

    Wang Y, Yu L, Lou XW(D) (2016) Synthesis of highly uniform molybdenum-glycerate spheres and their conversion into hierarchical MoS2 hollow nanospheres for lithium-ion batteries. Angew Chem Int Ed 55(26):7423–7426. https://doi.org/10.1002/anie.201601673

    CAS  Article  Google Scholar 

  53. 53.

    Huang Y, Wang Y, Zhang X, Lai F, Sun Y, Li Q, Wang H (2019) N-doped carbon@nanoplate-assembled MoS2 hierarchical microspheres as anode material for lithium-ion batteries. Mater Lett 243:84–87. https://doi.org/10.1016/j.matlet.2019.01.141

    CAS  Article  Google Scholar 

  54. 54.

    Wan Z, Shao J, Yun J, Zheng H, Gao T, Shen M, Qu Q, Zheng H (2014) Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10(23):4975–4981. https://doi.org/10.1002/smll.201401286

    CAS  Article  PubMed  Google Scholar 

Download references


The authors would like to thank the Centres for X-ray Diffraction Studies, Nanotechnology, and Physical Methods of Surface Investigation of the Research park of Saint Petersburg State University for XRD, SEM, and XPS studies.


The financial support was from Saint Petersburg State University (grant no. 26455158).

Author information



Corresponding author

Correspondence to Veniamin V. Kondratiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.I., Eliseeva, S.N., Tolstopjatova, E.G. et al. Enhanced electrochemical performance of MoS2 anode material with novel composite binder. J Solid State Electrochem 24, 1607–1614 (2020). https://doi.org/10.1007/s10008-020-04701-3

Download citation


  • Composites
  • Molybdenum disulphide
  • Energy storage
  • Lithium-ion batteries