A perceived paucity of quantitative studies in the modern era of voltammetry: prospects for parameterisation of complex reactions in Bayesian and machine learning frameworks

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Compton RG, Banks CE (2007) Understanding Voltammetry. World Scientific, Singapore

    Google Scholar 

  2. 2.

    Zhang Y, Guo Si-X, Zhang X, Bond AM, Zhang J (2020) Mechanistic understanding of the electrocatalytic co2 reduction reaction – new developments based on advanced instrumental techniques. Nano Today. https://doi.org/10.1016/j.nantod.2019.100835

    CAS  Article  Google Scholar 

  3. 3.

    Li D, Lin C, Batchelor-McAuley C, Chen L, Compton RG (2018) Tafel analysis in practice. J Electroanal Chem 826:117–124

    CAS  Article  Google Scholar 

  4. 4.

    Heyrovsky J, Kuta J (1966) Principles of polarography. Academic Press, New York

    Google Scholar 

  5. 5.

    Bard AJ, Faulkner LR (2001) Electrochemical methods: principles and applications, 2nd edn. Wiley, New York

    Google Scholar 

  6. 6.

    Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  7. 7.

    Compton, Kätelhön RG, Laborda E, Ward KR (2020) Understanding voltammetry: simulation of electrode processes, 2nd edn. Scientific, World

    Google Scholar 

  8. 8.

    Savéant JM, Costentin C (2019) Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  9. 9.

    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36(4):706–723

    CAS  Article  Google Scholar 

  10. 10.

    Nicholson RS, Shain I (1965) Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers. Anal Chem 37(2):178–190

    CAS  Article  Google Scholar 

  11. 11.

    Nicholson RS (1965) Theory and Application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37(11):1351–1355

    CAS  Article  Google Scholar 

  12. 12.

    Salverda JM, Patil AV, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters GW, Davis JJ, Heering HA, Aartsma TJ (2010) Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity. Angew Chem 122(33):5912–5915

    Article  Google Scholar 

  13. 13.

    Morris GP, Baker RE, Gillow K, Davis JJ, Gavaghan DJ, Bond AM (2015) Theoretical analysis of the relative significance of thermodynamic and kinetic dispersion in the dc and ac voltammetry of surface-confined molecules. Langmuir 31(17):4996–5004

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Leger C, Jones AK, Albracht SPJ, Armstrong FA (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106(50):13058–13063

    CAS  Article  Google Scholar 

  15. 15.

    Fourmond V, Leger C (2017) Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr Opin Electrochem 1(1):110–120

    CAS  Article  Google Scholar 

  16. 16.

    Aaronson BDB, Chen C-H, Li H, Koper MTM, Lai SCS, Unwin PR (2013) Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction. J Am Chem Soc 135(10):3873–3880

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Macpherson JV (2015) A practical guide to using boron doped diamond in electrochemical research. Phys Chem Chem Phys 17(5):2935–2949

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Cobb SJ, Ayres ZJ, Macpherson JV (2018) Boron doped diamond: a designer electrode material for the twenty-first century. Ann Rev Anal Chem 11(1):463–484

    CAS  Article  Google Scholar 

  19. 19.

    Cobb S, Laidlaw F West G, Wood G, Newton M, Beanland R, Macpherson J (2020) Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond. ChemRxiv

  20. 20.

    Li J, Bentley CL, Tan S-Y, Mosali VSS, Rahman MA, Cobb SJ, Guo S-X, Macpherson JV, Unwin PR, Bond AM, Zhang J (2019) Impact of sp2 carbon edge effects on the electron-transfer kinetics of the ferrocene/ferricenium process at a boron-doped diamond electrode in an ionic liquid. J. Phys. Chem. C 123(28):17397–17406

    CAS  Article  Google Scholar 

  21. 21.

    Tan S-Y, Unwin PR, MacPherson JV, Zhang J, Bond AM (2017) Probing electrode heterogeneity using fourier-transformed alternating current voltammetry: protocol development. Electrochim Acta 240:514–521

    CAS  Article  Google Scholar 

  22. 22.

    Patten HV, Lai SC, Macpherson JV, Unwin PR (2012) Active sites for outer-sphere, inner-sphere and complex multistage electrochemical reactions at polycrystalline boron-doped diamond electrodes (pBDD) revealed with scanning electrochemical cell microscopy (SECCM). Anal Chem 84(12):5427–5432

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Bano K, Zhang J, Bond AM, Unwin PR, Macpherson JV (2015) Diminished electron transfer kinetics for [Ru(NH3)6]3+/2+, [α -SiW12O40]4-/5-, and [α -SiW12O40]5-/6- processes at boron doped diamond electrodes. J Phys Chem C 119(22):12464–12472

    CAS  Article  Google Scholar 

  24. 24.

    Rahman MA, Guo S-X, Laurans M, Izzet G, Proust A, Bond AM, Zhang J (2020) Thermodynamics, electrode kinetics and mechanistic nuances associated with the voltammetric reduction of dissolved Bu4N4[PW11O39{Sn(C6H4)C ≡ C(C6H4)(N3C4H10)}] and a surface confined diazonium derivative. ACS Appl Energy Mat 3(4):3991–4006

    CAS  Article  Google Scholar 

  25. 25.

    Laborda E, Henstridge RC, Compton RG (2012) Asymmetric Marcus theory: application to electrode kinetics. J Electroanal Chem 667:48–53

    CAS  Article  Google Scholar 

  26. 26.

    Kennedy GF, Bond AM, Simonov AN (2017) Modelling ac voltammetry with MECSim: facilitating simulation-experiment comparisons. Curr Opin Electrochem 1(1):140–147

    CAS  Article  Google Scholar 

  27. 27.

    Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106(11):4585–4621

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bird MJ, Iyoda T, Bonura N, Bakalis J Ledbetter AJ, Miller JR (2017) Effects of electrolytes on redox potentials through ion pairing. J Electroanal Chem 804:107–115

    CAS  Article  Google Scholar 

  29. 29.

    Bond AM, Mashkina EA, Simonov AN (2014) A critical review of the methods available for quantitative evaluation of electrode kinetics at stationary macrodisk electrodes in developments in electrochemistry: science inspired by Martin Fleishmann, Pletcher D, Tian Z-Q, Williams DE ( Eds) Wiley. Chichester, Chapter 2:21–47

    Google Scholar 

  30. 30.

    Robinson M, Ounnunkad K, Zhang J, Gavaghan D, Bond AM (2019) Models and their limitations in the voltammmetric parameterization of the six-electron surface-confined reduction of [PMo12O40]3- at glassy carbon and boron doped diamond electrodes. ChemElectrochem 6:54999–55510

    CAS  Article  Google Scholar 

  31. 31.

    Sapozhnikova EP, Bogdan M, Speiser B, Rosenstiel WJ (2006) EChem++ – An object-oriented problem solving environment for electrochemistry. 3. Classification of voltammetric signals by the Fuzzy ARTMAP neural network with respect to reaction mechanisms. J Electroanal Chem 588(1):15–26

    CAS  Article  Google Scholar 

  32. 32.

    Schachterle SD, Perone SP (1981) Classification of voltammetric data by computerized pattern recognition. Anal Chem. 53(11):1672–1678

    CAS  Article  Google Scholar 

  33. 33.

    See for example, Mueller J, Masssaron L (2018) Machine learning for dummies. Wiley, New York

  34. 34.

    Mittermayr CR, Drouen A, Otto M, Grasserbauer M (1994) Neural networks for library search of ultraviolet spectra. Anal Chim Acta 294(3):227–242

    CAS  Article  Google Scholar 

  35. 35.

    Kennedy GF, Zhang J, Bond AM (2019) Automatically identifying electrode reaction mechanisms using deep neural networks. Anal Chem 91(19):12220–12227

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    See for example, Neapolitan RE (2004) Intelligent systems analysis including Bayesian statistics and statistical treatment of data: learning Bayesian networks. Pearson Prentice Hall, Upper Saddle River

  37. 37.

    See for example, Lambert B (1918) A student’s guide to Bayesian statistics. SAGE publications, London

  38. 38.

    Gavaghan DJ, Cooper J, Daly A, Gills C, Gillow K, Robinson M, Simonov AN, Zhang J, Bond AM (2018) Use of Bayesian inference for parameter recovery in DC and AC voltammetry. ChemElectroChem 5(6):917–935

    CAS  Article  Google Scholar 

  39. 39.

    Robinson M, Simonov AN, Zhang J, Bond AM, Gavaghan D (2019) Separating the effects of experimental noise from inherent system variability in voltammetry: the [Fe(CN)6]3-/4- process. Anal Chem 91(3):1944–1953

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Li J, Kennedy GF, Gundry L, Bond AM (2019) Zhang J Application of Bayesian inference in Fourier-transformed alternating current voltammetry for electrode kinetic mechanism distinction. Anal. Chem. 91(8):5303–5309

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Li J, Kennedy GF, Bond AM, Zhang J (2018) Demonstration of superiority of the Marcus-Hush electrode kinetic model in the electrochemistry of dissolved decamethylferrocene at a gold-modified electrode by Fourier-transformed alternating current voltammetry. J Phys Chem C 122(16):9009–9014

    CAS  Article  Google Scholar 

  42. 42.

    Speiser B (1996) Data optimisation in DC voltammetry. Electroanal Chem 19:1–108

    CAS  Google Scholar 

  43. 43.

    Tan Y, Stevenson GP, Baker RE, Elton D, Gillow K, Zhang J, Bond AM, Gavaghan DJ (2009) Designer based Fourier transformed voltammetry: a multi-frequency, variable amplitude, sinusoidal waveform. J Electroanal Chem 634(1):11–21

    CAS  Article  Google Scholar 

  44. 44.

    Li J, Bentley CL, Bond AM, Zhang J (2016) Dual-frequency alternating current designer waveform for reliable voltammetric determination of electrode kinetics approaching the reversible limit. Anal Chem 88(4):2367–2374

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Roe DK (1984) In: Kissinger PT, Heineman WR (eds) Overcoming solution resistance with stability and grace in potentiostatic circuits, in laboratory techniques in electroanalytical chemistry, Chapter 7. Marcel Dekker, New York, pp 193–234

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan M. Bond.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bond, A.M. A perceived paucity of quantitative studies in the modern era of voltammetry: prospects for parameterisation of complex reactions in Bayesian and machine learning frameworks. J Solid State Electrochem (2020). https://doi.org/10.1007/s10008-020-04639-6

Download citation