Skip to main content
Log in

Process of electrochemical electrode modification by polyaniline in the frame of percolation model

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) represents itself a class of polymers having ionic and electronic conductivities. The polymer has wide application as chemical modifier of electrodes for voltammetry. Electrochemical polymerization of aniline includes in itself some oxidation/reduction stages of electroactive groups. In the result of this process, polyaniline structures of different contents are formed. The qualitative and quantitative contents of polymer film and its area and morphology during the polymerization process play an important role in electroconductivity and response of the final synthesis product on analyte. We demonstrate a possibility of quantitative description of the polyaniline electrochemical polymerization process in the frame of percolation model covering wide temporal range (100–500 reduction/oxidation cycles). We can evaluate the basic parameters (number of percolation channels and fractal dimensions with respect to the applied potential) characterizing the quality of electrode polymer cover. The microphotos obtained with the help of the high-resolution scanning electron microscope support the obtained results independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig.16
Scheme 1

Similar content being viewed by others

Abbreviations

DEL:

Double electric layer

DLA:

Diffusion-limited aggregation

SEM:

Scanning electron microscope.

FD:

Fractal dimension

FLSM:

Functional linear square method

IM:

Intermediate model

LLSM:

Linear least square method

PANI:

Polyaniline

PM:

Percolation model

VAG(s):

Voltammogram(s)

References

  1. Budnikov H, Shirokova V (2013) Term “nano” in electroanalysis: a trendy prefix or a new stage of its development? J Anal Chem 68(8):663–670

    Article  CAS  Google Scholar 

  2. Nigmatullin R, Budnikov H, Sidelnikov A (2018) Mesoscopic theory of percolation currents associated with quantitative description of VAGs: confirmation on real data. Chaos, Solitons Fractals 106:171–183

    Article  Google Scholar 

  3. Diab N, AbuZuhri A, Schuhmann W (2003) Sequential-injection stripping analysis of nifuroxime using DNA-modified glassy carbon electrodes. Bioelectrochemistry 61(1-2):57–63

    Article  CAS  PubMed  Google Scholar 

  4. Moss R, Pérez-Roa R, Anderson M (2013) Electrochemical response of titania, zirconia, and alumina electrodes to phosphate adsorption. Electrochim Acta 104:314–321

    Article  CAS  Google Scholar 

  5. Battistel D, Daniele S (2013) Determination of trace bismuth by under-potential deposition-stripping voltammetry at mesoporous platinum microelectrodes: application to pharmaceutical products. J Solid State Electrochem 17(6):1509–1516

    Article  CAS  Google Scholar 

  6. Wang J, Kawde A (2001) Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Anal Chim Acta 431(2):219–224

    Article  CAS  Google Scholar 

  7. Biallozor S, Kupniewska A (2005) Conducting polymers electrodeposited on active metals. Synth Met 155(3):443–449

    Article  CAS  Google Scholar 

  8. Mu S, Yang Y (2008) Spectral characteristics of polyaniline nanostructures synthesized by using cyclic voltammetry at different scan rates. J Phys Chem B 112(37):11558–11563

    Article  CAS  PubMed  Google Scholar 

  9. Gvozdenović M, Jugović B, Stevanović J, Grgur B (2014) Electrochemical synthesis of electroconducting polymers. Hem Ind 68(6):673–684

    Article  Google Scholar 

  10. Nigmatullin R, Sidelnikov A, Budnikov H, Maksyutova E (2018) Description of complex fluids electrochemical data in the frame of percolation model. Electroanal 30(9):2053–2065

    Article  CAS  Google Scholar 

  11. Abrantes LM, Correia JP, Savic M, Jin G (2001) Structural modifications during conducting polymer formation—an ellipsometric study. Electrochim Acta 46(20-21):3181–3187

    Article  CAS  Google Scholar 

  12. Rego LS, Antonio JL, Silva CH, Nobrega MM, Temperini ML, Torresi RM, de Torresi SIC (2016) Electrochemical template synthesis of adherent polyaniline thin films with tubular structure. J Solid State Electrochem 20(4):983–991

    Article  CAS  Google Scholar 

  13. Wang J, Zhang K, Xu H, Yan B, Gao F, Shi Y, Du Y (2018) Engineered photoelectrochemical platform for the ultrasensitive detection of caffeic acid based on flower-like MoS2 and PANI nanotubes nanohybrid. Sensors Actuators B Chem 276:322–330

    Article  CAS  Google Scholar 

  14. Liu X, Shang P, Zhang Y, Wang X, Fan Z, Wang B, Zheng Y (2014) Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. J Mater Chem A 2(37):15273–15278

    Article  CAS  Google Scholar 

  15. Liu X, Zheng Y, Wang X (2015) Controllable preparation of polyaniline–graphene nanocomposites using functionalized graphene for supercapacitor electrodes. Chem Eur J 21(29):10408–10415

    Article  CAS  PubMed  Google Scholar 

  16. Skotheim TA, Reynolds J (2006) Conjugated polymers: theory, synthesis, properties, and characterization. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Inzelt G (2012) Conducting polymers: a new era in electrochemistry. In: Scholz F (ed) Monographs in electrochemistry, 2nd edn. Springer, Berlin

    Google Scholar 

  18. Wallace G, Spinks G, Kane-Maguire L, Teasdale P (2009) Conductive electroactive polymers: intelligent polymer systems. CRC press, Boca Raton

    Google Scholar 

  19. Zotti G, Cattarin S, Comisso N (1987) Electrodeposition of polythiophene, polypyrrole and polyaniline by the cyclic potential sweep method. J Electroanal Chem 235(1-2):259–273

    Article  CAS  Google Scholar 

  20. Hussain A, Kumar A (2003) Electrochemical synthesis and characterization of chloride doped polyaniline. Bull Mater Sci 26(3):329–334

    Article  CAS  Google Scholar 

  21. Mohammad F (2001) Handbook of advanced electronic and photonic materials and devices. Academic Press, Cambridge

    Google Scholar 

  22. Pud A (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66(1):1–18

    Article  CAS  Google Scholar 

  23. Tarasevich M, Orlov S, Shkolnikov E (1990) Electrochemistry of polymers. Science, Moscow

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation Basic Research Project № 17-43-020232 r-Povolzh’ye-а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Andriianova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigmatullin, R.R., Budnikov, H.C., Mustafin, A.G. et al. Process of electrochemical electrode modification by polyaniline in the frame of percolation model. J Solid State Electrochem 23, 1221–1235 (2019). https://doi.org/10.1007/s10008-019-04217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04217-5

Navigation