Skip to main content

Advertisement

Log in

Advanced carbon electrode for electrochemical capacitors

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical capacitors are high-power energy storage devices having long cycle durability in comparison to secondary batteries. The energy storage mechanisms can be electric double-layer capacitance (ion adsorption) or pseudocapacitance (fast redox reaction) at the electrode-electrolyte interface. Most commonly used electrode materials are carbon materials with high specific surface area, microporous-activated carbons. A considerable number of studies have been conducted to optimize the pore structure and surface functionalities of activated carbons. In addition to conventional activated carbons, other types of carbon materials such as carbon aerogel/xerogel, templated carbons, carbide-derived carbons, carbon nanotubes, and graphene-based materials have been investigated. This review highlights the key features of advanced carbon materials for application to commercial capacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. International Energy Agency (2018) World energy outlook 2017. OECD/IEA, Paris

    Google Scholar 

  2. Miller JR, Simon P (2008) Science 321(5889):651–652

    Article  CAS  PubMed  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publisher, New York

    Book  Google Scholar 

  4. Kötz R, Carlen M (2000) Electrochim Acta 45(15-16):2483–2498

    Article  Google Scholar 

  5. Miller JR (2016) J Power Sources 326:726–735

    Article  CAS  Google Scholar 

  6. Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195(24):7880–7903

    Article  CAS  Google Scholar 

  7. Frackowiak E, Béguin F (2001) Carbon 39(6):937–950

    Article  CAS  Google Scholar 

  8. Gryglewicz G, Machnikowski J, Grabowska E, Lota G, Frackowiak E (2005) Electrochim Acta 50(5):1197–1206

    Article  CAS  Google Scholar 

  9. Raymundo-Piñero E, Kierzek K, Machnikowski J, Beguin F (2006) Carbon 44(12):2498–2507

    Article  CAS  Google Scholar 

  10. Shiraishi S (2013) Bol Grupo Español Carbón 28:18–24

    Google Scholar 

  11. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Electrochim Acta 50(14):2799–2805

    Article  CAS  Google Scholar 

  12. Nishihara H, Itoi H, Kogure T, Hou P-X, Touhara H, Okino F, Kyotani T (2009) Chem Eur J 15(21):5355–5363

    Article  CAS  PubMed  Google Scholar 

  13. Soneda Y, Kodama M (2013) Electrochemistry 81(10):845–848

    Article  CAS  Google Scholar 

  14. Fang B, Wei YZ, Maruyama K, Kumagai M (2005) J Appl Electrochem 35(3):229–233

    Article  CAS  Google Scholar 

  15. Lin C, Ritter JA, Popov BN (1999) J Electrochem Soc 146(10):3639–3643

    Article  CAS  Google Scholar 

  16. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313(5794):1760–1763

    Article  CAS  PubMed  Google Scholar 

  17. Kado Y, Imoto K, Soneda Y, Yoshizawa N, Horii D, Suematsu S (2016) J Electrochem Soc 163(8):A1753–A1758

    Article  CAS  Google Scholar 

  18. Yamada Y, Kimizuka O, Tanaike O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Hatori H (2009) Electrochem Solid-State Lett 12(3):K14–K16

    Article  CAS  Google Scholar 

  19. Raymundo-Piñero E, Leroux F, Béguin F (2006) Adv Mater 18(14):1877–1882

    Article  CAS  Google Scholar 

  20. Kodama M, Yamashita J, Soneda Y, Hatori H, Nishimura S, Kamegawa K (2004) Mater Sci Eng B 108(1-2):156–161

    Article  CAS  Google Scholar 

  21. Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K (2007) Carbon 45(5):1105–1107

    Article  CAS  Google Scholar 

  22. Wang D-W, Li F, Chen Z^G, Lu GQ, Cheng H-M (2008) Chem Mater 20(22):7195–7200

    Article  CAS  Google Scholar 

  23. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8(10):3498–3502

    Article  CAS  PubMed  Google Scholar 

  24. Soneda Y, Toyoda M, Tani Y, Yamashita J, Kodama M, Hatori H, Inagaki M (2004) J Phys Chem Solids 65(2-3):219–222

    Article  CAS  Google Scholar 

  25. Simon P, Gogotsi Y (2008) Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  26. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Adv Mater 26(14):2219–2251

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Toyoda M, Inagaki M (2008) New Carbon Mater 23(2):111–115

    Article  CAS  Google Scholar 

  28. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) J Electrochem Soc 147(7):2486–2493

    Article  CAS  Google Scholar 

  29. Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P (2008) J Am Chem Soc 130(9):2730–2731

    Article  CAS  PubMed  Google Scholar 

  30. Persons R (1990) Chem Rev 90(5):813–826

    Article  Google Scholar 

  31. Pandolfo AG, Hollenkamp AH (2006) J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  32. Xie Y, Kocaefe D, Chen C, Kocaefe Y (2016) J Nanomater 2016:2302595

    Article  CAS  Google Scholar 

  33. Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Carbon 107:448–473

    Article  CAS  Google Scholar 

  34. Yoon SH, Lee J, Hyeon T, Oh SM (2002) J Electrochem Soc 147:2507–2512

    Article  Google Scholar 

  35. Nishihara H, Kyotani T (2012) Adv Mater 24(33):4473–4498

    Article  CAS  PubMed  Google Scholar 

  36. Morishita T, Tsumura T, Toyoda M, Przepiórski J, Morawski AW, Konno H, Inagaki M (2010) Carbon 48(10):2690–2707

    Article  CAS  Google Scholar 

  37. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70(11):1480–1482

    Article  CAS  Google Scholar 

  38. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Appl Phys Lett 77(15):2421–2423

    Article  CAS  Google Scholar 

  39. Barisci JN, Wallace GG, Baughman RH (2000) J Electrochem Soc 147(12):4580–4583

    Article  CAS  Google Scholar 

  40. An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Adv Mater 13(7):497–500

    Article  CAS  Google Scholar 

  41. Lota G, Fic K, Frackowiak E (2011) Energy Environ Sci 4(5):1592–1605

    Article  CAS  Google Scholar 

  42. Chen T, Dai LM (2013) Mater Today 16(7-8):272–280

    Article  CAS  Google Scholar 

  43. Miller JR, Outlaw RA, Hollowa BC (2010) Science 329(5999):1637–1639

    Article  CAS  PubMed  Google Scholar 

  44. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) J Chem Sci 120(1):9–13

    Article  CAS  Google Scholar 

  45. Huang Y, Liang J, Chen Y (2012) Small 8(12):1805–1834

    Article  CAS  PubMed  Google Scholar 

  46. Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N (2018) Int J Energy Res 42(14):4284–4300. https://doi.org/10.1002/er.4170

    Article  CAS  Google Scholar 

  47. Chen J, Li C, Shi G (2013) J Phys Chem Lett 4(8):1244–1253

    Article  CAS  PubMed  Google Scholar 

  48. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14(3):271–279

    Article  CAS  PubMed  Google Scholar 

  49. NEDO Carbon Nanotube Capacitor Development Project (2011) Evaluation report http://www.nedo.go.jp/content/100433173.pdf. Accessed 1 Oct 2018

  50. Naoi K, Simon P (2008) Electrochem Soc Interface 17:34–37

    CAS  Google Scholar 

  51. Conway BE (1991) J Electrochem Soc 138(6):1539–1548

    Article  CAS  Google Scholar 

  52. Conway BE, Birss V, Wojtowicz J (1997) J Power Sources 66(1-2):1–14

    Article  CAS  Google Scholar 

  53. Oda H, Yamashita A, Minoura S, Okamoto M, Morimoto T (2006) J Power Sources 158(2):1510–1516

    Article  CAS  Google Scholar 

  54. Hsieh C, Teng H (2002) Carbon 40(5):667–674

    Article  CAS  Google Scholar 

  55. Frackowiak E, Lota G, Machnikowski J, Guterl CV, Béguin F (2006) Electrochim Acta 51(11):2209–2214

    Article  CAS  Google Scholar 

  56. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Carbon 132:104–140

    Article  CAS  Google Scholar 

  57. Lota G, Grzyb B, Machnikowska H, Machnikowski J, Frackowiak E (2005) Chem Phys Lett 404(1-3):53–58

    Article  CAS  Google Scholar 

  58. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mat 19(3):438–447

    Article  CAS  Google Scholar 

  59. Sahoo MK, Gogoi P, Rajeshkhanna G, Chilukuri SV, Rao GR (2017) Appl Surf Sci 418:40–48

    Article  CAS  Google Scholar 

  60. Ryu KS, Kim KM, Park NG, Park YJ, Chang SH (2002) J Power Sources 103(2):305–309

    Article  CAS  Google Scholar 

  61. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferrais JP (1994) J Power Sources 47(1-2):89–107

    Article  CAS  Google Scholar 

  62. Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80(1-2):142–148

    Article  CAS  Google Scholar 

  63. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16(16):3184–3190

    Article  CAS  Google Scholar 

  64. Liu KC, Anderson MA (1996) J Electrochem Soc 143(1):124–130

    Article  CAS  Google Scholar 

  65. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142(8):2699–2703

    Article  CAS  Google Scholar 

  66. Meher SK, Rao GR (2011) J Phys Chem C 115(31):15646–15654

    Article  CAS  Google Scholar 

  67. Naoi K, Naoi W, Aoyagi S, Miyamoto J, Kamino T (2013) Acc Chem Res 46(5):1075–1083

    Article  CAS  PubMed  Google Scholar 

  68. Fisher RA, Watt MR, Readya WJ (2013) ECS J Solid State Sci Technol 2(10):M3170–M3177

    Article  CAS  Google Scholar 

  69. Kyotani T, Tsai LF, Tomita A (1995) Chem Mater 7(8):1427–1428

    Article  CAS  Google Scholar 

  70. Ahn HJ, Sohn JI, Kim YS, Shim HS, Kim WB (2006) Electrochem Commun 8(4):513–516

    Article  CAS  Google Scholar 

  71. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Beguin F (2005) Carbon 43(6):1293–1302

    Article  CAS  Google Scholar 

  72. Li L, Song H, Chen X (2006) Electrochim Acta 51(26):5715–5720

    Article  CAS  Google Scholar 

  73. Liu HY, Wang KP, Teng H (2005) Carbon 43(3):559–566

    Article  CAS  Google Scholar 

  74. Nishihara H, Yang QH, Hou PX, Unno M, Yamauchi S, Saito R, Paredes JI, Martinez-Alonso A, Tascon JMD, Sato Y, Terauchi M, Kyotani T (2009) Carbon 47(5):1220–1230

    Article  CAS  Google Scholar 

  75. Moriguchi I, Nakahara F, Furukawa H, Yamada H, Kudo T (2004) Electrochem Solid-State Lett 7(8):A221–A223

    Article  CAS  Google Scholar 

  76. Morishita T, Ishihara K, Kato M, Inagaki M (2007) Carbon 45(1):209–211

    Article  CAS  Google Scholar 

  77. Inagaki M, Kato M, Morishita T, Morita K, Mizuuchi K (2007) Carbon 45(5):1121–1124

    Article  CAS  Google Scholar 

  78. Nakazono T, Morishita T (2016) KONA Powder Particle J 33(0):333–339

    Article  CAS  Google Scholar 

  79. Morishita T, Ishihara K, Kato M, Tsumura T, Inagaki M (2007) TANSO 2007(226):19–24

    Article  Google Scholar 

  80. Kado Y, Imoto K, Soneda Y, Yoshizawa N (2014) J Power Sources 271:377–381

    Article  CAS  Google Scholar 

  81. Kado Y, Soneda Y, Yoshizawa N (2015) J Power Sources 276:176–180

    Article  CAS  Google Scholar 

  82. Kado Y, Imoto K, Soneda Y, Yoshizawa N (2016) J Power Sources 305:128–133

    Article  CAS  Google Scholar 

  83. Kado Y, Soneda Y (2017) TANSO 280:182–187

    Article  Google Scholar 

  84. Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I (2004) J Power Sources 133(2):298–301

    Article  CAS  Google Scholar 

  85. Mitani S, Lee SI, Saito K, Korai Y, Mochida I (2006) Electrochim Acta 51(25):5487–5493

    Article  CAS  Google Scholar 

  86. Sevilla M, Álvarez S, Centeno T, Fuertes A, Stoeckli F (2007) Electrochim Acta 52(9):3207–3215

    Article  CAS  Google Scholar 

  87. Centeno TA, Stoeckli F (2006) Electrochim Acta 52(2):560–566

    Article  CAS  Google Scholar 

  88. Ishimoto S, Asakawa Y, Shinya M, Naoi K (2009) J Electrochem Soc 156(7):A563–A571

    Article  CAS  Google Scholar 

  89. Ruch PW, Cericola D, Foelske A, Kötz R, Wakaun A (2010) Electrochim Acta 55(7):2352–2357

    Article  CAS  Google Scholar 

  90. Shiraishi S (2012) Key Eng Mater 497:80–86

    Article  CAS  Google Scholar 

  91. Muroi S, Iida D, Tsuchikawa T, Yabuuchi N, Horikoshi R, Hosono N, Komatsu D, Komaba S (2015) Electrochemistry 83(8):609–618

    Article  CAS  Google Scholar 

  92. Tokita M, Yoshimoto N, Fujii K, Morita M (2016) Electrochim Acta 209:210–218

    Article  CAS  Google Scholar 

  93. Frackowiak E, Béguin F (2002) Carbon 40(10):1775–1787

    Article  CAS  Google Scholar 

  94. Kado Y, Soneda Y, Yoshizawa N (2015) ECS Electrochem Lett 4:A22–A23

    Article  CAS  Google Scholar 

  95. Kado Y, Soneda Y, Yoshizawa N (2015) J Appl Electrochem 45(3):273–280

    Article  CAS  Google Scholar 

  96. Kado Y, Soneda Y (2016) J Phys Chem Solids 99:167–172

    Article  CAS  Google Scholar 

  97. Cazorla-Amorós D, Lozano-Castelló D, Morallón E, Bleda-Marínez MJ, Linares-Solano A, Shiraishi S (2010) Carbon 48(5):1451–1456

    Article  CAS  Google Scholar 

  98. Wang J, Polleux J, Lim J, Dunn B (2007) J Phys Chem C 111(40):14925–14931

    Article  CAS  Google Scholar 

  99. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Nat Mater 9(2):146–151

    Article  CAS  PubMed  Google Scholar 

  100. Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein S, Tolbert SH, Perlich J, Dunn B, Brezesinski T (2011) Small 7(3):407–414

    Article  CAS  PubMed  Google Scholar 

  101. Karthikeyan K, Amaresh S, Lee SN, Aravindan V, Lee YS (2014) Chem Asian J 9(3):852–857

    Article  CAS  PubMed  Google Scholar 

  102. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Béguin F (1999) Carbon 37(1):61–69

    Article  CAS  Google Scholar 

  103. Nishi Y (2001) J Power Sources 100(1-2):101–106

    Article  CAS  Google Scholar 

  104. Tarascon JM, Armand M (2001) Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  105. Armand M, Tarascon JM (2008) Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  106. Palacin MR (2009) Chem Soc Rev 38(9):2565–2575

    Article  CAS  PubMed  Google Scholar 

  107. Kim SW, Seo DH, Ma X, Ceder G, Kang K (2012) Adv Energy Mater 2(7):710–721

    Article  CAS  Google Scholar 

  108. Slater MD, Kim D, Lee E, Johnson CS (2013) Adv Funct Mater 23(8):947–958

    Article  CAS  Google Scholar 

  109. Clarke FW, Washington HS (1922) Proc Natl Acad Sci U S A 8(5):108–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stevens DA, Dahn JR (2000) J Electrochem Soc 147(4):1271–1273

    Article  CAS  Google Scholar 

  111. Alcántara R, Lavela P, Ortiz JF, Tirado JL (2005) Electrochem Solid-State Lett 8(4):A222–A225

    Article  CAS  Google Scholar 

  112. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Adv Funct Mater 21(20):3859–3867

    Article  CAS  Google Scholar 

  113. Wenzel A, Hara T, Janek J, Adelhelm P (2011) Energy Environ Sci 4(9):3342–3345

    Article  CAS  Google Scholar 

  114. Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Adv Energy Mater 2(7):873–877

    Article  CAS  Google Scholar 

  115. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Nano Lett 12(7):3783–3787

    Article  CAS  PubMed  Google Scholar 

  116. Kuratani K, Yao M, Senoh H, Takeichi N, Sakai T, Kiyobayashi T (2012) Electrochim Acta 76:320–325

    Article  CAS  Google Scholar 

  117. Shao Y, Xiao J, Wang W, Engelhard M, Chen X, Nie Z, Gu M, Saraf LV, Exarhos G, Zhang J-G, Liu J (2013) Nano Lett 13(8):3909–3914

    Article  CAS  PubMed  Google Scholar 

  118. Lotfabad EM, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D (2014) J Mater Chem A 2(46):19685–19695

    Article  CAS  Google Scholar 

  119. Han P, Han X, Yao J, Zhang L, Cao X, Huang C, Cui G (2015) J Power Sources 297:457–463

    Article  CAS  Google Scholar 

  120. Guan Z, Liu H, Xu B, Hao X, Wang Z, Chen L (2015) J Mater Chem A 3(15):7849–7854

    Article  CAS  Google Scholar 

  121. Liu H, Jia M, Sun N, Cao B, Chen R, Zhu Q, Wu F, Qiao N, Xu B (2015) ACS Appl Mater Interfaces 7(49):27124–27130

    Article  CAS  PubMed  Google Scholar 

  122. Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2016) J Power Sources 318:41–48

    Article  CAS  Google Scholar 

  123. Iijima S (1991) Nature 345:56–58

    Article  Google Scholar 

  124. Hatori H, Tanaike O, Soneda Y, Kodama M (2014) Synthesiology 6:222–231

    Article  Google Scholar 

  125. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Science 306(5700):1362–1364

    Article  CAS  Google Scholar 

  126. Kimizuka O, Tanaike O, Yamashita J, Hiraoka T, Futaba DN, Hata K, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yamada Y, Hatori H (2008) Carbon 46(14):1999–2001

    Article  CAS  Google Scholar 

  127. Tanaike O, Futaba DN, Hata K, Hatori H (2009) Carbon Lett 10(2):90–93

    Article  Google Scholar 

  128. Tanaike O, Hatori H, Hata K (2011), a) JP PAT 4706066, 2011, b) US PAT 8072733, 2011

  129. Yamada Y, Tanaka T, Machida K, Suematsu S, Tamamitsu K, Kataura H, Hatori H (2012) Carbon 50(3):1422–1424

    Article  CAS  Google Scholar 

  130. Tanaike O, Kimizuka O, Yoshizawa N, Yamada K, Wang XQ, Hatori H, Toyoda M (2009) Electrochem Commun 11(7):1441–1444

    Article  CAS  Google Scholar 

  131. Hiraoka T, Izadi-Najafabadi A, Yamada T, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Funct Mater 20(3):422–428

    Article  CAS  Google Scholar 

  132. Yamada Y, Kimizuka O, Machida K, Suematsu S, Tamamitsu K, Saeki S, Yoshizawa N, Tanaike O, Yamashita J, Don F, Hata K, Hatori H (2010) Energy Fuel 24(6):3373–3377

    Article  CAS  Google Scholar 

  133. Izadi-Najafabadi A, Yamada T, Futaba DN, Hatori H, Iijima S, Hata K (2010) Electrochem Commun 12(12):1678–1681

    Article  CAS  Google Scholar 

  134. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN, Hatori H, Yumura M, Iijima S, Hata K (2010) Adv Mater 22(35):E235–E241

    Article  CAS  PubMed  Google Scholar 

  135. Shiraishi S, Kurihara H, Okabe K, Hulicova D, Oya A (2002) Electrochem Commun 4(7):593–598

    Article  CAS  Google Scholar 

  136. Al-zubaidi A, Inoue T, Matsushita T, Ishii Y, Hashimoto T, Kawasaki S (2012) J Phys Chem C 116(14):7681–7686

    Article  CAS  Google Scholar 

  137. Heller I, Kong J, Williams KA, Dekker C, Lemay SG (2006) J Am Chem Soc 128(22):7353–7359

    Article  CAS  PubMed  Google Scholar 

  138. Ruch PW, Hardwick LJ, Hahn M, Foelske A, Koetz R, Wokaun A (2009) Carbon 47(1):38–52

    Article  CAS  Google Scholar 

  139. Ruch PW, Kótz R, Wokaun A (2009) Electrochim Acta 54(19):4451–4458

    Article  CAS  Google Scholar 

  140. Honda Y, Takeshige M, Shiozaki H, Kitamura T, Yoshikawa K, Chakrabarti S, Suekane O, Pan L, Nakayama Y, Yamagata M, Ishikawa M (2008) J Power Sources 185(2):1580–1584

    Article  CAS  Google Scholar 

  141. Jang IY, Muramatsu H, Park KC, Kim YJ, Endo M (2009) Electrochem Commun 11(4):719–723

    Article  CAS  Google Scholar 

  142. Kim YJ, Kim YA, Chino T, Suezaki H, Endo M, Dresselhaus MS (2006) Small 2(3):339–345

    Article  CAS  PubMed  Google Scholar 

  143. Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Nano Res 4(9):870–881

    Article  CAS  Google Scholar 

  144. Ghosh A, Lee YH (2012) ChemSusChem 5(3):480–499

    Article  CAS  PubMed  Google Scholar 

  145. Zhang JT, Zhao XS (2012) ChemSusChem 5(5):818–841

    Article  CAS  PubMed  Google Scholar 

  146. Chen H, Di J, Jin Y, Chen M, Tian J, Li Q (2013) J Power Sources 237:325–331

    Article  CAS  Google Scholar 

  147. Yan J, Wang Q, Wei T, Fan ZJ (2014) Adv Energy Mater 4(4):1300816

    Article  CAS  Google Scholar 

  148. Mai LQ, Tian XC, Xu X, Chang L, Xu L (2014) Chem Rev 114(23):11828–11862

    Article  CAS  PubMed  Google Scholar 

  149. Vlad A, Singh N, Galande C, Ajayan PM (2015) Adv Energy Mater 5(19):1402115

    Article  CAS  Google Scholar 

  150. Yang ZB, Ren J, Zhang ZT, Chen XL, Guan GZ, Qin LB, Zhang Y, Peng HS (2015) Chem Rev 115(11):5159–5223

    Article  CAS  PubMed  Google Scholar 

  151. Liu LL, Niu ZQ, Chen J (2016) Chem Soc Rev 45(15):4340–4363

    Article  CAS  PubMed  Google Scholar 

  152. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nature Mater 5(12):987–994

    Article  CAS  Google Scholar 

  153. Laszczyk KU, Kobashi K, Sakurai S, Sekiguchi A, Futaba DN, Yamada T, Hata K (2015) Adv Energy Mater 5(18):1500741

    Article  CAS  Google Scholar 

  154. Taberna P-L, Chevallier G, Simon P, Plée D, Aubert T (2006) Mater Res Bull 41(3):478–484

    Article  CAS  Google Scholar 

  155. Show Y, Imaizumi K (2007) Diam Relat Mater 16(4-7):1154–1158

    Article  CAS  Google Scholar 

  156. Suematsu S, Machida K, Tamamitsu K (2008) JP PAT 5266844, 2013

  157. Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F (2011) ChemSusChem 4(7):943–949

    Article  CAS  PubMed  Google Scholar 

  158. Smithyman J, Moench A, Liang R, Zheng JP, Wang B, Zhang C (2012) Appl Phys A Mater Sci Process 107(3):723–731

    Article  CAS  Google Scholar 

  159. Dolah BNM, Deraman M, Othman MAR, Farma R, Taer E, Awitdrus A, Basri NH, Talib IA, Omar R, Nor NSM (2014) Mater Res Bull 60:10–19

    Article  CAS  Google Scholar 

  160. Quintero R, Kim DY, Hasegawa K, Yamada Y, Yamada A, Noda S (2014) RSC Adv 4(16):8230–8237

    Article  CAS  Google Scholar 

  161. Quintero R, Kim DT, Hasegawa K, Yamada Y, Yamada A, Noda S (2015) RSC Adv 5(21):16101–16111

    Article  CAS  Google Scholar 

  162. Lu W, Hartman R, Qu L, Dai L (2011) J Phys Chem Lett 2(6):655–660

    Article  CAS  Google Scholar 

  163. Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K (2011) ACS Nano 5(2):811–819

    Article  CAS  PubMed  Google Scholar 

  164. Shiraishi S, Kibe M, Yokoyama T, Kurihara H, Patel N, Oya A, Kaburagi Y, Hishiyama Y (2006) Appl Phys A Mater Sci Process 82(4):585–591

    Article  CAS  Google Scholar 

  165. Gu WT, Sevilla M, Magasinski A, Fuertes AB, Yushin G (2013) Energy Environ Sci 6(8):2465–2476

    Article  CAS  Google Scholar 

  166. Fan XM, Yu C, Ling Z, Yang J, Qiu JS (2013) ACS Appl Mater Interfaces 5(6):2104–2110

    Article  CAS  PubMed  Google Scholar 

  167. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Chem Mater 17(5):1241–1247

    Article  CAS  Google Scholar 

  168. Hulicova D, Kodama M, Hatori H, Shiraishi S (2009) Adv Funct Mater 19(11):1800–1809

    Article  CAS  Google Scholar 

  169. Lee J, Yoon S, Hyeon T, Oh SM, Kim KB (1999) Chem Commun 21:2177–2178

    Article  Google Scholar 

  170. Kodama M, Yamashita J, Soneda Y, Hatori H, Kamegawa K, Moriguchi I (2006) Chem Lett 35(6):680–681

    Article  CAS  Google Scholar 

  171. Kodama M (2013) TANSO 258:171–178

    Article  CAS  Google Scholar 

  172. Hulicova D, Kodama M, Hatori H (2006) Chem Mater 18(9):2318–2326

    Article  CAS  Google Scholar 

  173. Soneda Y, Toyoda M, Hashiya K, Yamashita J, Kodama M, Hatori H, Inagaki M (2003) Carbon 41(13):2680–2682

    Article  CAS  Google Scholar 

  174. Toyoda M, Tani Y, Soneda Y (2004) Carbon 42(14):2833–2837

    Article  CAS  Google Scholar 

  175. Soneda Y, Yamashita J, Kodama M, Hatori H, Toyoda M, Inagaki M (2006) Appl Phys A Mater Sci Process 82(4):575–578

    Article  CAS  Google Scholar 

  176. Toyoda M, Shimizu A, Iwata H, Inagaki M (2001) Carbon 39(11):1697–1707

    Article  CAS  Google Scholar 

  177. Toyoda M, Katoh H, Inagaki M (2001) Carbon 39(14):2231–2234

    Article  CAS  Google Scholar 

  178. Toyoda M, Sedlacik J, Inagaki M (2002) Synth Met 130(1):39–43

    Article  CAS  Google Scholar 

  179. Huang Z-H, Zheng XY, Lv W, Wang M, Yang Q-H, Kang FY (2011) Langmuir 27(12):7558–7562

    Article  CAS  PubMed  Google Scholar 

  180. Jang BZ, Liu C, Neff D, Yu Z, Wang MC, Xiong W, Zhamu A (2011) Nano Lett 11(9):3785–3791

    Article  CAS  PubMed  Google Scholar 

  181. Yu JH, Xu LL, Zhu QQ, Wang XX, Yun MJ, Dong LF (2016) J Inorg Mat 31:220–224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NEDO (New Energy and Industrial Technology Development Organization) Energy Innovation Program “Development of the carbon nanotube capacitor” (FY 2006–2010), and the NEDO R&D program for the Practical Utilization of Nanotechnology and Advanced Materials “Development of the aqueous electrochemical supercapacitor by hybrid nanocarbon electrode” (FY 2008–2011). We are grateful to the people who engaged in this joint research between Oita University, Toyo Tanso Co., Ltd., NEC Tokin Corporation and the Nippon Chemi-Con Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Soneda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kado, Y., Soneda, Y., Hatori, H. et al. Advanced carbon electrode for electrochemical capacitors. J Solid State Electrochem 23, 1061–1081 (2019). https://doi.org/10.1007/s10008-019-04211-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04211-x

Keywords

Navigation