Skip to main content
Log in

A comment on the need to distinguish between cell and electrode impedances

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The frequently overlooked elementary difference between electrode and cell impedance in studies of batteries and supercapacitors is discussed; effects on data interpretation and possible remedies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This element has also been called constant phase angle element CPA [26], this acronym appears to be orphaned.

  2. The following considerations apply to electrodes in a supercapacitor also; in case of pure double layer capacitor electrodes the absence of a Faradaic reaction may cause further complications beyond the scope of this comment.

  3. In his original report, Randles assigned a series connection of Rr und Cr to the electrode reaction in the equivalent circuit, this was later transformed into the charge transfer resistance Rct. and ZW, a diffusion impedance element. The latter is frequently omitted possibly resulting in confusion.

References

  1. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  2. Yuan X-Z, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells. Springer, London

    Book  Google Scholar 

  3. Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  4. Holze R (1994) Electrode impedance measurements: a versatile tool for electrochemists. Bull Electrochem 10:56–67

    CAS  Google Scholar 

  5. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. WILEY-Interscience, Hoboken, USA

    Book  Google Scholar 

  6. Trasatti S, Petrii OE (1992) Real surface-area measurements in electrochemistry. J Electroanal Chem 327(1-2):353–376

    Article  CAS  Google Scholar 

  7. Trasatti S, Petrii OE (1991) Real surface-area measurements in electrochemistry. Pure&Appl Chem 63(5):711–734

    Article  CAS  Google Scholar 

  8. Watt-Smith MJ, Friedrich JM, Rigby SP, Ralph TR, Walsh FC (2008) Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J Phys D Appl Phys 41:74004–74004

    Article  CAS  Google Scholar 

  9. Binninger T, Fabbri E, Kötz R, Schmidt TJ (2014) Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J Electrochem Soc 161(3):H121–H128

    Article  CAS  Google Scholar 

  10. Ganassin A, Maljusch A, Colic V, Spanier L, Brandl K, Schuhmann W, Bandarenka A (2016) Benchmark-ing the performance of thin-film oxide electrocatalysts for gas evolution reactions at high current densities. ACS Catal 6(5):3017–3024

    Article  CAS  Google Scholar 

  11. Maksimov YM, Podlovchenko BI (2017) Use of silver adatoms for the determination of the electrochemi-cally active surface area of polycrystalline gold. Mendel Commun 27(1):64–66

    Article  CAS  Google Scholar 

  12. Watzele S, Bandarenka AS (2016) Quick determination of electroactive surface area of some oxide electrode materials. Electroanalysis 28(10):2394–2399

    Article  CAS  Google Scholar 

  13. Wiberg GKH, Mayrhofer KJJ, Arenz M (2010) Investigation of the oxygen reduction activity on silver – a rotating disc electrode study. Fuel Cells 10(4):575–581

    Article  CAS  Google Scholar 

  14. Euler J (1961) Porendimensionen und Oberflächen-Kapazität von Braunstein. Electrochim Acta 4(1):27–41

    Article  CAS  Google Scholar 

  15. Keiser H, Beccu KD, Gutjahr MA (1976) Abschätzung der Porenstruktur Poröser Elektroden aus Impedanzmessungen. Electrochim Acta 21(8):539–543

    Article  CAS  Google Scholar 

  16. Holze R (1983) PhD-dissertation. Universität Bonn

  17. Göhr H, Schiller C-A (1986) Faraday-Impedanz als Verknüpfung von Impedanzelementen. Z Physik Chemie 148(1):105–124

    Article  Google Scholar 

  18. Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28

    Article  CAS  Google Scholar 

  19. Göhr H (1981) Über Beiträge einzelner Elektrodenprozesse zur Impedanz. Ber Bunsenges Phys Chem 85(4):274–280

    Article  Google Scholar 

  20. Shi J, Sun W (2011) Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete. Corr Sci Prot Technol 23:387–392

    CAS  Google Scholar 

  21. Katayama H (2014) Surface and interfacial analysis using electrochemical impedance measurement. J Japan Inst Met 78(11):419–425

    Article  CAS  Google Scholar 

  22. Talian SD, Bester-Rogac M, Dominko R (2017) The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium-sulfur batteries. Electrochim Acta 252:147–153

    Article  CAS  Google Scholar 

  23. Niya SMR, Hoorfa M (2016) On a possible physical origin of the constant phase element. Electrochim Acta 188:98–102

    Article  CAS  Google Scholar 

  24. Fournier J, Miousse D, Brossard L, Menard H (1995) Characterization by ac impedance spectroscopy of highly oriented pyrolytic graphite surfaces modified by argon plasma etching. Mater Chem Phys 42(3):181–187

    Article  CAS  Google Scholar 

  25. Bidoia ED, Bulhoes LOS, Rocha-Filho RC (1994) Pt/HClO4 Interface CPE: influence of surface roughness and electrolyte concentration. Electrochim Acta 39(5):763–769

    Article  CAS  Google Scholar 

  26. Wang YB, Yuan RK, Yuan H, Chen ZH (1993) Theoretical and experimental studies of conducting polymer polyaniline electrolyte Interface by impedance spectroscopy. Synth Met 55:1501–1508

    Article  CAS  Google Scholar 

  27. Pajkossy T (1991) Electrochemistry at fractal surfaces. J Electroanal Chem 300(1-2):1–11

    Article  CAS  Google Scholar 

  28. Lukacs Z (1999) Evaluation of model and dispersion parameters and their effects on the formation of constant-phase elements in equivalent circuits. J Electroanal Chem 464(1):68–75

    Article  CAS  Google Scholar 

  29. Fawcett WR, Kovacova Z, Motheo AJ, Foss CA (1992) Application of the AC admittance technique to double-layer studies on polycrystalline gold electrodes. J Electroanal Chem 326(1-2):91–103

    Article  CAS  Google Scholar 

  30. Córdoba-Torres P, Mesquita TJ, Nogueira RP (2015) Relationship between the origin of constant-phase element behavior in electrochemical impedance spectroscopy and electrode surface structure. J Phys Chem C119:4135–4147

  31. Burashnikova MM, Kazarinov IA, Zotova IV (2012) Nature of contact corrosion layers on lead alloys: a study by impedance spectroscopy. J Power Sources 207:19–29

    Article  CAS  Google Scholar 

  32. Lang G, Heusler KE (1995) Changes of the specific surface energy of gold due to the chemisorption of sulphate. J Electroanal Chem 391(1-2):169–179

    Article  Google Scholar 

  33. Lang G, Heusler KE (1998) Remarks on the energetics of interfaces exhibiting constant phase element behaviour. J Electroanal Chem 457(1-2):257–260

    Article  CAS  Google Scholar 

  34. Pajkossy T, Wandlowski T, Kolb DM (1996) Impedance aspects of anion adsorption on gold single crystal electrodes. J Electroanal Chem 414:209–220

    Google Scholar 

  35. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Constant-phase-element behavior caused by resistivity distributions in films I. Theory J Electrochem Soc 157(12):C452–C457

    Article  CAS  Google Scholar 

  36. Musiani M, Orazem ME, Pébère N, Tribollet B, Vivier V (2011) Constant-phase-element behavior caused by coupled resistivity and permittivity distributions in films. J Electrochem Soc 158(12):C424–C428

    Article  CAS  Google Scholar 

  37. Brug GJ, Van Den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176(1-2):275–295

    Article  CAS  Google Scholar 

  38. https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/

  39. Wabner DW, Holze R, Schmittinger P (1984) Impedance of an oxygen reducing gas diffusion electrode. Z Naturf B 39(2):157–162

    Article  Google Scholar 

  40. Two-, three-, and four-electrode experiments, https://www.gamry.com/application-notes/electrodes-cells/two-three-and-four-electrode-experiments/

  41. Solchenbach S, Pritzl D, Kong EJY, Landesfeind J, Gasteiger HA (2016) A gold micro-reference electrode for impedance and potential measurements in Lithium ion batteries. J Electrochem Soc 163(10):A2265–A2272

    Article  CAS  Google Scholar 

  42. Ender M, Illig J, Ivers-Tiffee E (2017) Three-electrode setups for Lithium-ion batteries I fem-simulation of different reference electrode designs and their implications for half-cell impedance spectra. J Electrochem Soc 164:A71–A79

    Article  CAS  Google Scholar 

  43. Costard J, Ender M, Weiss M, Ivers-Tiffee E (2017) Three-electrode setups for Lithium-ion batteries II experimental study of different reference electrode designs and their implications for half-cell impedance spectra. J Electrochem Soc 164:A80–A87

    Article  CAS  Google Scholar 

  44. Levi MD, Dargel V, Shilina Y, Aurbach D, Halalay IC (2014) Impedance spectra of energy-storage electrodes obtained with commercial three-electrode cells: some sources of measurement artefacts. Electrochim Acta 149:126–135

    Article  CAS  Google Scholar 

  45. Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87(1-2):12–20

    Article  CAS  Google Scholar 

  46. Liu Y, Gao S, Holze R, Shukla AK (2017) The cadmium electrode revisited: kinetic data. J Electrochem Soc 164(14):A3858–A3861

    Article  CAS  Google Scholar 

  47. Illig J, Ender M, Chrobak T, Schmidt JP, Klotz D, Ivers-Tiffee E (2012) Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. J Electrochem Soc 159(7):A952–A960

    Article  CAS  Google Scholar 

  48. Randles JEB (1947) Kinetics of rapid electrode reactions. Faraday Discuss 1:11–19

    Article  Google Scholar 

  49. Jovic VD, Determination of the correct value of C dl from the impedance results fitted by the commercially available software. https://www.gamry.com/assets/Application-Notes/Determination-of-Double-Layer-Capacitance-from-a-CPE.pdf; see also: https://www.gamry.com/application-notes/EIS/correct-value-of-cdl/

  50. Liu Y, Wiek A, Dzhagan V, Holze R (2016) Improved electrochemical behavior of amorphous carbon-coated copper/CNT composites as negative electrode material and their energy storage mechanism. J Electrochem Soc 163(7):A1247–A1253

    Article  CAS  Google Scholar 

  51. Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48(13):3825–3833

  52. Wabner D, Schmittinger P (1973) Metalloberfläche, Kritische Gedanken zur Analyse von Impedanzspektren für die Kinetik von Elektrodenvorgängen. Angew Elektrochemie 26:268–272

    Google Scholar 

  53. Orazem ME, Agarwal P, Garcia-Rubio LH (1994) Critical issues associated with interpretation of impedance spectra. J Electroanal Chem 378(1-2):51–62

    Article  Google Scholar 

  54. Holze R, Landolt-Börnstein (2007) In: Martienssen W, Lechner MD (eds) Numerical data and functional relationships in science and technology, new series, group iv: physical chemistry, volume 9: electrochemistry, subvolume a: electrochemical thermodynamics and kinetics. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgements

Preparation of this communication has been supported in various ways by the Alexander von Humboldt-Foundation, Deutscher Akademischer Austauschdienst, Fonds der Chemischen Industrie, Deutsche Forschungsgemeinschaft, National Basic Research Program of China, and National Materials Genome Project (2016YFB0700600), National Natural Science Foundation of China (51502137, U1601214, 51772147 and distinguished youth scientist of 51425301), and Jiangsu Distinguished Professorship Program (2016). Financial support within a research project at St. Petersburg State University supported by grant № 26455158 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rudolf Holze or Yuping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Qu, Q., Holze, R. et al. A comment on the need to distinguish between cell and electrode impedances. J Solid State Electrochem 23, 717–724 (2019). https://doi.org/10.1007/s10008-018-4155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4155-0

Keywords

Navigation