Skip to main content
Log in

The effect of platinum electrode surfaces on precise primary pH measurements

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For primary pH measurements, a platinum hydrogen electrode and a silver chloride electrode are immersed in the same solution in a cell without transference (Harned cell). The platinum electrode is covered with dispersed platinum (platinum black) to increase the surface area. To determine the influence of specific deposition conditions (current density, duration, and composition of the electrolyte) on the properties of platinum black, the surface area, and the electrode performance, platinized platinum electrodes were investigated systematically using scanning electron microscopy and optical microscopy. Confocal laser scanning microscopy was applied to obtain quantitative information about roughness parameters. After assessment of the surface structures, improved conditions for the fabrication of platinized platinum electrodes were derived. It was found that all investigated electrochemically coated platinum electrodes obtained comparable values of standard potential of Ag/AgCl-electrodes within the measurement uncertainty. The platinum layer obtained by sputtering was significantly less distinct and less homogenous than the layer of platinum obtained by electrochemical deposition. The examinatio of shiny (uncoated) platinum electrodes evidenced a significant difference between multiple-used and freshly prepared platinum electrodes. Thus, uncoated platinum electrodes are not suitable for the Harned cell measurement either. Thus, to obtain reliable and reproducible results in pH measurements using the primary method, an electrochemical coating of the platinum electrodes under defined conditions is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vonau W, Guth U (2006) J Solid State Electrochem 10(9):746–752

    Article  CAS  Google Scholar 

  2. Razmi H, Heidari H, Habibi E (2008) J Solid State Electrochem 12(12):1579–1587

    Article  CAS  Google Scholar 

  3. Kahlert H (2008) J Solid State Electrochem 12(10):1255–1266

    Article  CAS  Google Scholar 

  4. Alizadeh T, Jamshidi F (2015) J Solid State Electrochem 19(4):1053–1062

    Article  CAS  Google Scholar 

  5. Buck RP, Rondinini S, Convington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Pure Appl Chem 74(11):2169–2200

    Article  CAS  Google Scholar 

  6. Spitzer P, Pratt KW (2011) J Solid State Electrochem 15(1):69–76

    Article  CAS  Google Scholar 

  7. Bakos I (2000) J Solid State Electrochem 4:80–86

    CAS  Google Scholar 

  8. Forker W (1989) Elektrochemische Kinetik. Akademie-Verlag, Berlin

    Google Scholar 

  9. Brdicka R (1972) Grundlagen der physikalischen Chemie. VEB Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  10. Kortüm G (1957) Lehrbuch der Elektrochemie. Verlag Chemie GmbH, Weinheim/Bergstr

    Google Scholar 

  11. Greenwood NN, Earnshaw A (1990) Chemie der Elemente. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  12. Lehmann G (1948) Die Wasserstoffionen-Messung. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  13. Hunt LB (1962) Platinum Metals Rev 6:150–152

    Google Scholar 

  14. Draves CZ, Herman VT (1925) J Am Chem Soc 47(5):1226–1230

    Article  CAS  Google Scholar 

  15. Lorch AE (1934) Ind Eng Chem 6:164–165

    CAS  Google Scholar 

  16. Schwabe K (1976) pH-Messtechnik. Verlag Theodor Steinkopff, Dresden

    Google Scholar 

  17. Bates RG, Acree SF (1943) J Res Natl Bur Stand 30(2):129–155

    Article  CAS  Google Scholar 

  18. Dickson AG (1987) J Chem Thermodynamics 19(9):993–1000

    Article  CAS  Google Scholar 

  19. Bernard C (1970) Electrochim Acta 15(2):271–282

    Article  CAS  Google Scholar 

  20. Klopsteg PE (1922) Ind Eng Chem 14(5):399–405

    Article  CAS  Google Scholar 

  21. Clarke WF (1916) Dissertation. Johns Hopkins University, Baltimore

    Google Scholar 

  22. Mohn A (1906) Dissertation. Universität Zürich

  23. Feltham AM, Spiro M (1971) Chem Rev 71(2):177–193

    Article  CAS  Google Scholar 

  24. Hammett LP (1922) Dissertation. Columbia University, New York

    Google Scholar 

  25. Bates RG (1973) Determination of pH. Theory and practice. Wiley, New York

    Book  Google Scholar 

  26. Galster H (1990) pH-Messung. Grundlagen, Methoden, Anwendungen, Geräte. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  27. Hamer WJ, Acree SF (1944) J Res Natl Bur Stand 33(2):87–103

    Article  CAS  Google Scholar 

  28. Hollemann AF, Wiberg E (1958) Lehrbuch der anorganischen Chemie, 23. Auflage, Walter de Gruyter & Co., Berlin

    Google Scholar 

  29. Löffler F (2000) Design and production of the electric conductivity cell. In: PTB Bericht PTB-ThEx-15, 146. PTB-Seminar, Braunschweig, p 49–63

  30. International Recommendation No. 54 (1981) pH scale for aqueous solutions. Organisation Internationale de Metrologie Legale (OIML)

  31. Spitzer P, Wunderli S, Maksymiuk K, Michalska A, Kisiel A, Galus Z, Tauber G (2013) Reference electrodes for aqueous solutions. In: Inzelt G, Lewenstam A, Scholz F (eds) Handbook of reference electrodes. Springer-Verlag, Berlin Heidelberg, p 77–143

  32. Hills GJ, Ives DJG (1951) J Chem Soc 305-310

  33. Wagner W, Pruss A (2002) Phys Chem Ref Data 31(2):387–535

    Article  CAS  Google Scholar 

  34. Gennero de Chialvo MR, Chialvo AC (2004) Phys Chem Chem Phys 6(15):4009–4017

    Article  CAS  Google Scholar 

  35. Marković NM, Lucas CA, Climent V, Stamenković V, Ross PN (2000) Surf Sci 465(1-2):103–114

    Article  Google Scholar 

  36. Binder H, Köhling A, Metzelthin K, Sandstede G, Schrecker ML (1968) Chemie-Ing Techn 40(12):586–591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Steffen Weiß for conducting the actual magnetron sputter-coating.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Jehnert.

Electronic supplementary material

ESM 1

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehnert, D., Werner, B., Schiering, N. et al. The effect of platinum electrode surfaces on precise primary pH measurements. J Solid State Electrochem 23, 485–495 (2019). https://doi.org/10.1007/s10008-018-4144-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4144-3

Keywords

Navigation