Skip to main content
Log in

Anodic dissolution of chromium at high current densities in sodium nitrate electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The dissolution mechanism of pure chromium at high current density characteristic for electrochemical machining processes is studied. The combination of electrochemical, microscopic, and spectroscopic techniques leads to a comprehensive interpretation of the dissolution mechanism. The polishing quality increases with increasing nitrate concentration and current density, respectively. The oxygen evolution amounts up to 45% of the consumed anodic charge and the apparent valence of the chromium dissolution decreases with increasing applied potential down to z = 3.5. The authors explain this phenomenon by a passive dissolution of chromium via Cr3+ followed by a chemical oxidation of Cr3+ to dichromate under nitrate reduction to nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schneider M, Lohrengel MM (2017) Electrochemical machining. In: Breitkopf C, Swider-Lyons K (eds) Springer-Handbook of electrochemical energy. Springer, Dordrecht, pp 941–971

    Chapter  Google Scholar 

  2. Pirani M, Schröter K (1924) Elektrochemische Formgebung von harten metallischen Gegenstaenden Z. Metalkunde 16:132–133 in German

    CAS  Google Scholar 

  3. Rummyantsev E, Davidov A (1989) Electrochemical machining of metals. In: MIR Moscow

    Google Scholar 

  4. Davydov AD, Volgin VM (2007) Electrochemical machining. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 5. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  5. McGeough JA (1974) Principles of electrochemical machining. Chapman Hall, London

    Google Scholar 

  6. Altena HSJ (2000) Precision ECM by process characteristic modelling. PhD thesis, Caledonian University Glasgow

  7. Arzhintar OA, Dikusar AI, Petrenko WI, Petrov JI (1974) Anodic dissolution of chromium in neutral solutions at high current densities. Elektronnaja obrabotka materialov 60:9–14

    Google Scholar 

  8. Sauschkin WP (1974) Anodic dissolution of chromium in neutral solutions at high current densities. Elektronnaja obrabotka materialov 60:5–9

    Google Scholar 

  9. Rosenkranz C (2005) Elektrochemische Prozesse an Eisenoberflächen bei extremen anodischen Stromdichten. Dissertation thesis, Heinrich-Heine-University Düsseldorf, in German

  10. Lohrengel MM, Rataj KP, Münninghoff TR (2012) Struktur und Prozesse – die Metalloberfläche beim Electrochemical Machining. Galvanotechnik 110:260–264 in German

    Google Scholar 

  11. Manko M (2013) Über die Beteiligung von Oxidschichten bei der anodischen Auflösung von Chrom und Mangan. diploma thesis, Heinrich-Heine –University Düsseldorf, in German

  12. Bockris JOM, Khan SUM (1993) Surface electrochemistry—a molecular level approach. Plenum Press, New York

    Book  Google Scholar 

  13. Kaesche H (2003) Corrosion of metals. Springer Verlag, Berlin Heidelberg, pp 228–236

    Book  Google Scholar 

  14. Strehblow H-H (2016) Passivity of metals studied by surface analytical methods, a review. Electrochim Acta 212:630–648

    Article  CAS  Google Scholar 

  15. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford, p 262

    Google Scholar 

  16. Silkin SA, Petrenko VI, Dikusar AI (2010) Anodic dissolution of electrochemical chromium coatings in electrolytes for electrochemical machining: the dissolution rate and surface roughness. Surf Eng Appl Electrochem 46(1):1–8

    Article  Google Scholar 

  17. Lohrengel MM (2004) Electrochemical capillary cells. Corros Eng Sci Technol 39(1):53–58

    Article  CAS  Google Scholar 

  18. Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) A new microcell or microreactor for material surface investigations at large current densities. Electrochim Acta 49(17–18):2863–2870

    Article  CAS  Google Scholar 

  19. Rataj K, Hammer C, Walther B, Lohrengel MM (2013) Quantified oxygen evolution at microelectrodes. Electrochim Acta 90:12–16

    Article  CAS  Google Scholar 

  20. Hammer C, Walther B, Karabulut H, Lohrengel MM (2011) Oscillating oxygen evolution at Ta anodes. J Solid State Electrochem 15(9):1885–1891

    Article  CAS  Google Scholar 

  21. Fournier-Salaün MC, Salaün P (2007) Quantitative determination of hexavalent chromium in aqueous solutions by UV-Vis spectrophotometer. Cent Eur J Chem 5:1084–1093

    Google Scholar 

  22. Katsounaros I, Ipsakis D, Polatides C, Kyriacou G (2006) Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim Acta 52(3):1329–1338

    Article  CAS  Google Scholar 

  23. Reyter D, Chamoulaud G, Belanger D, Roue L (2006) Electrocatalytic reduction of nitrate on copper electrodes prepared by high-energy ball milling. J Electroanal Chem 596(1):13–24

    Article  CAS  Google Scholar 

  24. Kerkeni S, Lama-Pitara E, Barbier J (2002) Copper–platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal Today 75(1–4):35–42

    Article  CAS  Google Scholar 

  25. Schneider M, Schroth S, Richter S, Höhn S, Schubert N, Michaelis A (2011) In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions— part 2: the transpassive state. Electrochim Acta 70:76–83

    Article  CAS  Google Scholar 

  26. Rosenkranz C, Lohrengel MM, Schultze JW (2005) The surface structure during pulsed ECM of iron in NO3. Electrochim Acta 50(10):2009–2016

    Article  CAS  Google Scholar 

  27. Walther B (2008) Produktanalyse beim Electrochemical Machining (ECM) von Hartmetallen. Dissertation thesis, Heinrich-Heine-Universität Düsseldorf, in German

Download references

Funding

The Philips Consumer Lifestyle (Drachten NL) financially supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Simunkova, L., Manko, M. et al. Anodic dissolution of chromium at high current densities in sodium nitrate electrolyte. J Solid State Electrochem 23, 345–350 (2019). https://doi.org/10.1007/s10008-018-4140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4140-7

Keywords

Navigation