Skip to main content

Advertisement

Log in

Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Since the mechanism of charge storage in electrical double-layer capacitors (EDLCs) relies on diffusion of ions into the pores of the electrodes, in general, a much lower capacitance is expected for gel-based electrolytes than liquid electrolytes. However, in this work, we have found that the specific capacitance in gel-based electrolytes made of polyvinyl alcohol (PVA) and an acid (H2SO4 or H3PO4) is even higher than the specific capacitances of similar devices with liquid acid-based electrolytes. We have discovered that the reason is due to the gel being a redox active material with the capability of charge storage in the volume of the electrolyte. In this work, solid-state and flexible devices with both H2SO4-PVA and H3PO4–PVA electrolytes were fabricated and characterized. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were applied to estimate the capacitance associated to the gel electrolytes. Also, a relatively high cycling stability of 97.5% for H2SO4-PVA and 95% for H3PO4-PVA was obtained after 1000 charging-discharging cycles. A mechanism of charge storage is proposed to explain the redox active behavior of the gel electrolyte. The presented results are promising for employment of PVA gel electrolytes in some low-cost applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336

    Article  CAS  Google Scholar 

  2. Lu X, Yu M, Wang G, Tong Y, Li Y (2014) Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 7(7):2160–2181

    Article  Google Scholar 

  3. Pandey G, Hashmi S, Kumar Y (2010) Performance studies of activated charcoal based electrical double layer capacitors with ionic liquid gel polymer electrolytes. Energy Fuel 24(12):6644–6652

    Article  CAS  Google Scholar 

  4. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  CAS  Google Scholar 

  5. Liu Q, Nayfeh MH, Yau S-T (2010) Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J Power Sources 195(21):7480–7483

    Article  CAS  Google Scholar 

  6. Kang YJ, Chung H, Han C-H, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnol 23(6):065401

    Article  CAS  Google Scholar 

  7. Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Pei B, Zhao X, Dryfe RA (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2(4):530–536

    Article  CAS  Google Scholar 

  9. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5):4042–4049

    Article  CAS  PubMed  Google Scholar 

  10. Lu X, Wang G, Zhai T, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12(10):5376–5381

    Article  CAS  PubMed  Google Scholar 

  11. Ma W, Chen S, Yang S, Chen W, Weng W, Zhu M (2016) Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance. ACS Appl Mater Interfaces 8(23):14622–14627

    Article  CAS  PubMed  Google Scholar 

  12. Ren J, Li L, Chen C, Chen X, Cai Z, Qiu L, Wang Y, Zhu X, Peng H (2013) Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater 25(8):1155–1159

    Article  CAS  PubMed  Google Scholar 

  13. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106(51):21490–21494

    Article  PubMed  Google Scholar 

  14. Zdrojek M, Gebicki W, Jastrzebski C, Melin T, Huczko A (2004) Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy. Solid State Phenom 99:265–268

    Article  Google Scholar 

  15. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  16. Simon P, Burke A (2008) Nanostructured carbons: double-layer capacitance and more. Electrochem Soc Interface 17:38

    CAS  Google Scholar 

  17. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586

    Article  CAS  Google Scholar 

  18. Hu C-C, Tsou T-W (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4(2):105–109

    Article  CAS  Google Scholar 

  19. Senthilkumar S, Selvan RK, Ponpandian N, Melo J (2012) Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor. RSC Adv 2(24):8937–8940

    Article  CAS  Google Scholar 

  20. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems:1–25

  21. Tsay K-C, Zhang L, Zhang J (2012) Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim Acta 60:428–436

    Article  CAS  Google Scholar 

  22. Gao H, Lian K (2012) Advanced proton conducting membrane for ultra-high rate solid flexible electrochemical capacitors. J Mater Chem 22(39):21272–21278

    Article  CAS  Google Scholar 

  23. Aljafari B, Takshi A (2018) Gel electrolyte based supercapacitors with higher capacitances and lower resistances than devices with a liquid electrolyte. MRS Adv 3(22):1261–1267

    Article  CAS  Google Scholar 

  24. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M (2012) A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J Power Sources 198:402–407

    Article  CAS  Google Scholar 

  25. Yu H, Wu J, Fan L, Xu K, Zhong X, Lin Y, Lin J (2011) Improvement of the performance for quasi-solid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta 56(20):6881–6886

    Article  CAS  Google Scholar 

  26. Zhong J, Fan L-Q, Wu X, Wu J-H, Liu G-J, Lin J-M, Huang M-L, Wei Y-L (2015) Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochim Acta 166:150–156

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by a grant from National Science Foundation (NSF 1400017) and a grant from Community Foundation of Tampa Bay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Takshi.

Electronic supplementary material

ESM 1

(DOCX 1444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljafari, B., Alamro, T., Ram, M.K. et al. Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices. J Solid State Electrochem 23, 125–133 (2019). https://doi.org/10.1007/s10008-018-4120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4120-y

Keywords

Navigation