Skip to main content
Log in

MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

It is a top priority to simultaneously and accurately detect hydroquinone (HQ) and catechol (CC). Here, a new strategy for constructing simultaneous determination of HQ and CC sensor was proposed by one-step pyrolysis of MIL series metal-organic frameworks materials (MIL-125 (Ti), MIL-101 (Cr), and MIL-101 (Fe)) to obtain uniform-mixed carbon/metal oxide porous materials (TiO2/C900, Cr2O3/C900, and Fe2O3/C900, respectively). And, cyclic voltammetry (CV) was utilized to investigate the electrochemical behavior of the composite materials. It was found that the simultaneous detection of catechol (CC) and hydroquinone (HQ) could be achieved by the sensor consisted of TiO2/C900 with the superior BET-specific surface area and micro-mesoporous characteristics. And, the linear range and detection limit of HQ and CC for the TiO2/C900 sensor were further studied. In addition, it was also found that the pyrolysis temperature and metal centers would affect the internal structures and component of the materials, thus affecting the properties of materials. The experiment provides a new idea for optimizing the simultaneous detection of the dihydroxybenzene isomers.

A new feasible strategy was proposed by introducing the binary uniform-mixed carbon/metal oxide porous materials, by which the calcination temperature and the metal centers of MOFs would be considered to construct the sensor for simultaneous determination of catechol (CC) and hydroquinone (HQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Figueiredo EC, Tarley CRT, Kubota LT, Rath S, Arruda M (2007) A Z Microchem J 85(2):290–296

    Article  CAS  Google Scholar 

  2. Prathap MUA, Satpati B, Srivastava R (2013) Sensors Actuators B Chem 186:67–77

    Article  CAS  Google Scholar 

  3. Taysse L, Troutaud D, Khan NA, Deschaux P (1995) Toxicol 98(1-3):207–214

    Article  CAS  Google Scholar 

  4. Song D, Xia J, Zhang F, Bi S, Xiang W, Wang Z, Xia L, Xia Y, Li Y, Xia LH (2015) Sensors Actuators B Chem 206:111–118

    Article  CAS  Google Scholar 

  5. Nagaraja P, Vasantha RA, Sunitha KR (2001) J Pharm Biomed Anal 25(3-4):417–424

    Article  CAS  PubMed  Google Scholar 

  6. Asan A, Isildak I (2003) J Chromatogr A 988(1):145–149

    Article  CAS  PubMed  Google Scholar 

  7. Moldoveanu SC, Kiser M (2007) J Chromatogr A 1141(1):90–97

    Article  CAS  PubMed  Google Scholar 

  8. Pistonesi MF, Di NM, Centurión ME, Palomeque ME, Lista AG, Fernández Band BS (2006) Talanta 69(5):1265–1268

    Article  CAS  Google Scholar 

  9. Ding YP, Liu WL, Wu QS, Wang XG (2005) J Electroanal Chem 575(2):275–280

    Article  CAS  Google Scholar 

  10. Liu X, Li Y, Liu X, Zeng X, Kong B, Luo S (2012) J Solid State Electrochem 16(3):883–889

    Article  CAS  Google Scholar 

  11. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrochim Acta 85:295–301

    Article  CAS  Google Scholar 

  12. Nagaraja P, Vasantha RA, Sunitha KR (2001) J Pharm Biomed Anal 25(3-4):417–424

    Article  CAS  PubMed  Google Scholar 

  13. Zhao C, Song JF, Zhang JC (2002) Anal Bioanal Chem 374(3):498–504

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho RMD, Mello C, Kubota LT (2000) Anal Chim Acta 420(1):109–121

    Article  Google Scholar 

  15. Xu CX, Huang KJ, Fan Y, Wu ZW, Li J, Gan T (2012) Mater Sci Eng C 32(4):969–974

    Article  CAS  Google Scholar 

  16. Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) J Am Chem Soc 133(11):3693–3695

    Article  CAS  PubMed  Google Scholar 

  17. Lv X, Zhang G, Fu W (2012) Procedia Eng 27:570–576

    Article  CAS  Google Scholar 

  18. Bao S, Li CM, Zang J, Cui X, Qiao Y, Guo J (2010) Adv Funct Mater 18:591–599

    Article  CAS  Google Scholar 

  19. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Cheminform 40:481

  20. Wang YJ, Wilkinson DP, Zhang J (2011) Chem Rev 111(12):7625–7651

    Article  CAS  PubMed  Google Scholar 

  21. Yin H, Tang H, Wang D, Gao Y, Tang Z (2012) ACS Nano 9:8288

    Article  CAS  Google Scholar 

  22. Wu B, Hu D, Kuang Y, Yu Y, Zhang X, Chen J (2011) Chem Commun 47(18):5253–5255

    Article  CAS  Google Scholar 

  23. Ziyatdinova G, Morozov M, Budnikov H, Grazhulene S, Red’Kin A (2012) J Solid State Electrochem 16(1):127–134

    Article  CAS  Google Scholar 

  24. Yang Y, Ren Y, Sun C, Hao S (2014) Green Chem 16(4):2273–2280

    Article  CAS  Google Scholar 

  25. Wang L, Zhang Y, Du Y, Lu D, Zhang Y, Wang C (2012) J Solid State Electrochem 16(4):1323–1331

    Article  CAS  Google Scholar 

  26. Ma XM, Liu ZN, Qiu CC (2013) Microchim Acta 180(5-6):461–468

    Article  CAS  Google Scholar 

  27. Lee J, Kim J, Hyeon T (2011) Adv Mater 18:2073–2094

    Article  CAS  Google Scholar 

  28. Zhang Y, Zeng L, Bo X, Wang H, Guo L (2012) Anal Chim Acta 752:45–52

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, Yang K, Gaillard J, Bandaru P, Rao A (2010) Adv Mater 20:179–182

    Article  CAS  Google Scholar 

  30. Zhang Y, Xiao S, Xie J, Yang Z, Pang P, Gao Y (2014) Sensors Actuators B Chem 204:102–108

    Article  CAS  Google Scholar 

  31. Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Chem Rev 112(2):1001–1033

    Article  CAS  PubMed  Google Scholar 

  32. Li ZY, Zhang ZJ, Ye YX, Cai KC, Du FF, Zeng H, Tao J, Lin QJ, Zheng Y, Xiang SC (2017) J Mater Chem A 5(17):7816–7824

    Article  CAS  Google Scholar 

  33. Li WH, Ding K, Tian HR (2017) Adv Funct Mater 27(27):1702067

    Article  CAS  Google Scholar 

  34. Hou CT, Xu Q, Yin LN, Hu XY (2012) Analyst 137:5083

    Google Scholar 

  35. Liu B, Shioyama H, Akita T (2008) J Am Chem Soc 130(16):5390–5391

    Article  CAS  PubMed  Google Scholar 

  36. Lai T, Cai W, Dai W, Ye J (2014) Electrochim Acta 138:48–55

    Article  CAS  Google Scholar 

  37. Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Electrochem Commun 13(2):133–137

    Article  CAS  Google Scholar 

  38. Zhou J, Li X, Yang L, Yan S, Wang M, Cheng D, Chen Q, Dong Y, Liu P, Cai W, Zhang C (2015) J Anal Chim Acta 899:57–65

    Article  CAS  Google Scholar 

  39. Huang YH, Chen JH, Sun X, Su ZB, Xing HT, Hu SR, Weng W, Guo HX, Wu WB, He YS (2015) Sensors Actuators B Chem 212:165–173

    Article  CAS  Google Scholar 

  40. Feng S, Zhang Y, Zhong Y, Li Y, Li S (2014) J Electroanal Chem 733:1–5

    Article  CAS  Google Scholar 

  41. Nematollahi D, Alimoradi M, Husain SW (2004) Electroanalysis 16(16):1359–1365

    Article  CAS  Google Scholar 

  42. Zhang Y, Zheng JB (2007) Electrochim Acta 52:7210–7216

  43. Nematollahi D, Ariapad A, Rafiee M (2007) J Electroanal Chem 602:37–42

  44. Shanmugam VM, Kulangiappar K, Ramaprakash M, Vasudevan D, Kumar RS, Velayutham D, Raju T (2017) Tetrahedron Lett 58:2294–2297

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (21207018, 21673039, and 21573042), Natural Science Foundation of Fujian Province (2015J01039, 2018J07001), and Environment and Land Resources Bureau of Pingtan Comprehensive Experimentation Area (DH-1374).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuling Ma or Shengchang Xiang.

Additional information

Highlight

1. Binary uniform-mixed carbon/metal oxide porous materials by one-step pyrolysis of MOFs were firstly used to construct the electrochemistry sensor.

2. The electrocatalysis performance of materials can be regulated by adjusting the calcination temperature and the metal centers of MOFs.

3. A promising sensor for the simultaneous determination of dihydroxybenzene isomer has been developed.

Electronic supplementary material

ESM 1

(DOC 1265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, M., Ye, Y. et al. MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor. J Solid State Electrochem 23, 81–89 (2019). https://doi.org/10.1007/s10008-018-4111-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4111-z

Keywords

Navigation