Skip to main content
Log in

Electrochemical deposition of cabbage-like lead microstructures on fluorine-doped tin oxide for oxygen sensor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Metallic lead (Pb) has been electrodeposited on FTO substrate at room temperature from aqueous nitrate solution under constant applied potential in the range of − 0.46 to − 0.8 V vs. SCE. Cyclic voltammetry shows that 3D nucleation and growth are the main feature at higher electrolyte concentration when the profile is recorded at 20 mVs−1. While a single step potential facilitates the deposition of faceted crystals of Pb, distinguished lead having cabbage-like morphology can be deposited by applying sequential two step potentials. The I-t response shows that the deposition is initiated through instantaneous 2D nucleation and growth at the shorter time domain followed by 3D nucleation and growth in 0.4 M Pb(NO3)2. Theoretical simulation of the closely matched experimental I-t profile for simple step potential provides a 2D rate constant of 2.00 ± 0.04 × 10−7 mol cm−2 s−1 while for 3D, the vertical and plane growth rate constant of 3.27 ± 0.05 × 10−5 mol cm−2 s−1 and 2.00 ± 0.04 × 10−7 mol cm−2 s−1, respectively. The formation of the cabbage morphology has been discussed on the basis of time evaluation of FE-SEM. The high surface area of unique lead deposits with cabbage morphology shows better life time and oxygen sensitivity in a typical oxygen sensor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Delayen J, Dick G, Mercereau J (1981) Test of a ß≃ 0.1 superconducting split ring resonator. IEEE Trans Magn 17(1):939–942

    Article  Google Scholar 

  2. Pavlov D (1993) Premature capacity loss (PCL) of the positive lead/acid battery plate: a new concept to describe the phenomenon. J Power Sources 42(3):345–363

    Article  CAS  Google Scholar 

  3. Avellaneda CO, Napolitano MA, Kaibara EK, Bulhões LOS (2005) Electrodeposition of lead on ITO electrode: influence of copper as an additive. Electrochim Acta 50(6):1317–1321

    Article  CAS  Google Scholar 

  4. Rashkova B, Guel B, Pötzschke RT, Staikov G, Lorenz WJ (1998) Electrodeposition of Pb on n-Si (111). Electrochim Acta 43(19-20):3021–3028

    Article  CAS  Google Scholar 

  5. Mukhopadhyay I, Raghavan MSS, Sharon M, Minoura H, Veluchamy P (1994) Photoelectrochemical studies of photoactive lead oxide prepared by the “potential pulse coupled potentiodynamic anodization technique” in alkaline medium. J Electroanal Chem 379(1-2):531–534

    Article  Google Scholar 

  6. Patel DB, Mukhopadhyay I (2015) Schottky junction solar cells based on non-stoichiometric PbO x films. J Phys D Appl Phys 48(2):025102

    Article  CAS  Google Scholar 

  7. Willett M (2014) Oxygen sensing for industrial safety - evolution and new approaches. Sensors 14(4):6084–6103

    Article  CAS  PubMed  Google Scholar 

  8. Winand R (1994) Electrodeposition of metals and alloys—new results and perspectives. Electrochim Acta 39(8-9):1091–1105

    Article  CAS  Google Scholar 

  9. Ghali E, Girgis M (1985) Electrodeposition of lead from aqueous acetate and chloride solutions. Metall Trans B 16(3):489–496

    Article  Google Scholar 

  10. Mostany J, Parra J, Scharifker BR (1986) The nucleation of lead from halide-containing solutions. J Appl Electrochem 16(3):333–338

    Article  CAS  Google Scholar 

  11. Mostany J, Mozota J, Scharifker BR (1984) Three-dimensional nucleation with diffusion controlled growth: Part II. The nucleation of lead on vitreous carbon. J Electroanal Chem Interfacial Electrochem 177(1-2):25–37

    Article  CAS  Google Scholar 

  12. Popov KI, Stojilković ER, Radmilović V, Pavlović MG (1997) Morphology of lead dendrites electrodeposited by square-wave pulsating overpotential. Powder Technol 93(1):55–61

    Article  CAS  Google Scholar 

  13. Danilov FI, Protsenko VS, Vasil’eva EA, Kabat OS (2011) Antifriction coatings of Pb–Sn–Cu alloy electro-deposited from methanesulphonate bath. Trans IMF 89(3):151–115

    Article  CAS  Google Scholar 

  14. Wong SM, Abrantes LM (2005) Lead electrodeposition from very alkaline media. Electrochim Acta 51(4):619–626

    Article  CAS  Google Scholar 

  15. Carlos IA, Siqueira JLP, Finazzi GA, De Almeida MRH (2003) Voltammetric study of lead electrodeposition in the presence of sorbitol and morphological characterization. J Power Sources 117(1-2):179–186

    Article  CAS  Google Scholar 

  16. Carlos IA, Matsuo TT, Siqueira JLP, De Almeida MRH (2004) Voltammetric and morphological study of lead electrodeposition on copper substrate for application of a lead–acid batteries. J Power Sources 132(1-2):261–265

    Article  CAS  Google Scholar 

  17. Gu Y-Y, Zhou Q-H, Yang T-Z, Wei LIU, Zhang D-C (2011) Lead electrodeposition from alkaline solutions containing xylitol. Trans Nonferrous Met Soc China 21(6):1407–1413

    Article  CAS  Google Scholar 

  18. Bhatt AI, Bond AM, Zhang J (2007) Electrodeposition of lead on glassy carbon and mercury film electrodes from a distillable room temperature ionic liquid, DIMCARB. J of Solid State Electrochem 11(12):1593–1603

    Article  CAS  Google Scholar 

  19. Katayama Y, Fukui R, Miura T (2013) Electrodeposition of Lead from 1-butyl-1-methylpyrrolidinium Bis (trifluoromethylsulfonyl) amide Ionic Liquid. J Electrochem Soc 160(6):D251–D255

    Article  CAS  Google Scholar 

  20. Nikolić ND, Branković G, Lačnjevac UČ (2011) Formation of two-dimensional (2D) lead dendrites by application of different regimes of electrolysis. J Solid State Electrochem 16:2121–2126

    Article  CAS  Google Scholar 

  21. Nikolić ND, Ivanović ER, Branković G, Lačnjevac UČ, Stevanović SI, Stevanović JS, Pavlović MG (2015) Electrochemical and crystallographic aspects of lead granular growth. Metall Mater Trans B Process Metall Mater Process Sci 46(4):1760–1774

    Article  CAS  Google Scholar 

  22. Fletcher S (1983) Some new formulae applicable to electrochemical nucleation/growth/collision. Electrochim Acta 28(7):917–923

    Article  CAS  Google Scholar 

  23. O’M Bockris AKNR J, Aldeco MG (2000) Modern electrochemistry, vol 2. Kluwer Academic Publishers, New York

    Google Scholar 

  24. Jaya S, Prabhakarrao G, Prasadarao T (1986) Bull Electrochem 2(1):65–68

    CAS  Google Scholar 

  25. Hills GJ, Schiffrin DJ, Thompson J (1974) Electrochemical nucleation from molten salts—I. Diffusion controlled electrodeposition of silver from alkali molten nitrates. Electrochim Acta 19(11):657–670

    Article  CAS  Google Scholar 

  26. Bewick A, Fleischmann M, Thirsk HR (1962) Kinetics of the electrocrystallization of thin films of calomel. Trans Faraday Soc 58:2200–2216

    Article  CAS  Google Scholar 

  27. Armstrong RD, Fleischmann M, Thirsk HR (1966) The anodic bbhaviour of mercury in hydroxide ion solutions. J Electroanal Chem 11(3):208–223

    CAS  Google Scholar 

  28. Cobianu C, Serban B, Avramescu V, Hobbs B, Pratt K, Willett M (2012) Lifetime considerations for lead-free oxygen galvanic sensors. Ann Acad Romanian Sci 5:7–8

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Solar Research & Development Centre (SRDC), Pandit Deendayal Petroleum University (PDPU), for providing the technical and financial assistance.

Funding

Financial support from the Department of Science and Technology (DST), Government of India, (Project number SR/S1/PC-44/2011), is deeply acknowledged to carry out this whole investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, D., Waldiya, M. & Mukhopadhyay, I. Electrochemical deposition of cabbage-like lead microstructures on fluorine-doped tin oxide for oxygen sensor application. J Solid State Electrochem 23, 159–167 (2019). https://doi.org/10.1007/s10008-018-4110-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4110-0

Keywords

Navigation