Skip to main content
Log in

Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Al-0.05Ga-0.05Sn-0.05Pb-xMg alloys with different Mg content have been prepared. Electrochemical tests including constant current discharge test, current polarization test, electrochemical impedance spectroscopy (EIS) test, and Tafel test are performed. The surface states of the alloys after constant current discharge were analyzed by scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS). X-ray diffraction (XRD) analysis was carried out. We find that different Mg contents have great influence on discharge performance of aluminum alloy anodes by changing the corrosion behavior. The SEM and XRD show that Mg can influence the distribution of corrosion and change the grain size to improve the discharge performance of aluminum anodes. Al-0.05Ga-0.05Sn-0.05Pb-0.1Mg shows the best electrochemical performance due to uniform corrosion and proper grain size. At 800 mA cm−2 constant current discharge, the potential of the aluminum anode can reach − 1.54 V (vs Hg/HgO), and the utilization ratio is over 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279

    Article  CAS  Google Scholar 

  2. Kraytsberg A, Ein-Eli Y (2013) The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy 2(4):468–480

    Article  CAS  Google Scholar 

  3. Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Phys Chem Chem Phys 16(35):18658–18674

    Article  CAS  Google Scholar 

  4. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43(22):7746–7786

    Article  CAS  Google Scholar 

  5. Lee J, Tai Kim S, Cao R, Choi N, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1(1):34–50

    Article  CAS  Google Scholar 

  6. Chen R, Luo R, Huang Y, Wu F, Li L (2016) Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 3:1600051

    Article  Google Scholar 

  7. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Ramli WMFW, Daud WRW, Sahari J (2015) Recent developments in materials for aluminum–air batteries: a review. J Ind Eng Chem 32:1–20

    Article  CAS  Google Scholar 

  8. Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475

    Article  CAS  Google Scholar 

  9. Cho Y, Park I, Lee H, Kim J (2015) Aluminum anode for aluminum–air battery—part I: influence of aluminum purity. J Power Sources 277:370–378

    Article  CAS  Google Scholar 

  10. Jingling M, Jiuba W, Hongxi Z, Quanan L (2015) Electrochemical performances of Al–0.5Mg–0.1Sn–0.02In alloy in different solutions for Al–air battery. J Power Sources 293:592–598

    Article  CAS  Google Scholar 

  11. Gelman D, Lasman I, Elfimchev S, Starosvetsky D, Ein-Eli Y (2015) Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J Power Sources 285:100–108

    Article  CAS  Google Scholar 

  12. Pino M, Herranz D, Chacón J, Fatás E, Ocón P (2016) Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte. J Power Sources 326:296–302

    Article  CAS  Google Scholar 

  13. Wang LLYL (2010) Electrochemical corrosion behavior of nanocrystalline materials a review. J Mater Sci Technol 26:1–14

    Google Scholar 

  14. Zhang B, Li Y, Wang F (2007) Electrochemical corrosion behaviour of microcrystalline aluminium in acidic solutions. Corros Sci 49(5):2071–2082

    Article  CAS  Google Scholar 

  15. Amin MA, Abd El-Rehim SS, El-Sherbini EEF, Mahmoud SR, Abbas MN (2009) Pitting corrosion studies on Al and Al–Zn alloys in SCN− solutions. Electrochim Acta 54(18):4288–4296

    Article  CAS  Google Scholar 

  16. Flamini DO, Saidman SB, Bessone JB (2007) Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process. Thin Solid Films 515(20-21):7880–7885

    Article  CAS  Google Scholar 

  17. Elango A, Periasamy VM, Paramasivam M (2009) Study on polyaniline-ZnO used as corrosion inhibitors of 57S aluminium in 2 M NaOH solution. Anti-Corros Method M 56(5):266–270

    Article  CAS  Google Scholar 

  18. Egan DR, Ponce De León C, Wood RJK, Jones RL, Stokes KR, Walsh FC (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310

    Article  CAS  Google Scholar 

  19. Wang D, Zhang D, Lee K, Gao L (2015) Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries. J Power Sources 297:464–471

    Article  CAS  Google Scholar 

  20. Wang D, Ma ZY, Gao ZM (2009) Effects of severe cold rolling on tensile properties and stress corrosion cracking of 7050 aluminum alloy. Mater Chem Phys 117(1):228–233

    Article  CAS  Google Scholar 

  21. Ma Z, Li X (2011) The study on microstructure and electrochemical properties of Al–Mg–Sn–Ga–Pb alloy anode material for Al/AgO battery. J Solid State Electrochem 15(11-12):2601–2610

    Article  CAS  Google Scholar 

  22. Moghadam Z, Shabani-Nooshabadi M, Behpour M (2017) Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries. J Mol Liq 242:971–978

    Article  CAS  Google Scholar 

  23. Mutlu RN, Ateş S, Yazıcı B (2017) Al-6013-T6 and Al-7075-T7351 alloy anodes for aluminium-air battery. Int J Hydrog Energy 42(36):23315–23325

    Article  CAS  Google Scholar 

  24. Bessone JB, Flamini DO, Saidman SB (2005) Comprehensive model for the activation mechanism of Al–Zn alloys produced by indium. Corros Sci 47(1):95–105

    Article  CAS  Google Scholar 

  25. Sun H, Liu L, Li Y, Ma L, Yan Y (2013) The performance of Al–Zn–In–Mg–Ti sacrificial anode in simulated deep water environment. Corros Sci 77:77–87

    Article  CAS  Google Scholar 

  26. Keywni MRSA (2011) Optimization of manganese and magnesium contents in As-cast aluminum-zinc-indium alloy as sacrificial anode. J Mater Sci Technol 27:785–792

    Article  Google Scholar 

  27. Doche ML, Novel-Cattin F, Durand R, Rameau JJ (1997) Characterization of different grades of aluminum anodes for aluminum/air batteries. J Power Sources 65(1-2):197–205

    Article  CAS  Google Scholar 

  28. Ghali E (2010) Corrosion resistance of aluminum and magnesium alloys understanding, performance and testing. Corros Eng Sci Technol:8–16

  29. Emregül KC, Aksüt AA (2000) The behavior of aluminum in alkaline media. Corros Sci 42(12):2051–2067

    Article  Google Scholar 

  30. Tamada A, Tamura Y (1993) The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater. Corros Sci 34(2):261–277

    Article  CAS  Google Scholar 

  31. Fan L, Lu H, Leng J (2015) Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries. Electrochim Acta 165:22–28

    Article  CAS  Google Scholar 

  32. Ma J, Wen J, Gao J, Li Q (2014) Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions. J Power Sources 253:419–423

    Article  CAS  Google Scholar 

  33. Galicia G, Pébère N, Tribollet B, Vivier V (2009) Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy. Corros Sci 51(8):1789–1794

    Article  CAS  Google Scholar 

  34. Hong T, Sun YH, Jepson WP (2002) Study on corrosion inhibitor in large pipelines under multiphase flow using EIS. Corros Sci 44(1):101–112

    Article  CAS  Google Scholar 

  35. Salinas DR, García SG, Bessone JB (1999) Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al–Zn. J Appl Electrochem 29(9):1063–1071

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant No. 21273058 and 21673064), China Postdoctoral Science Foundation (Grant No. 2017M621284), Heilongjiang Postdoctoral Fund (Grant No. LBH-Z17074), HIT Environment and Ecology Innovation Special Funds (Grant No. HSCJ201620), and the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) under the contract No. KF160410.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-Lei Sui or Zhen-Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Su, Y., Sui, XL. et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery. J Solid State Electrochem 23, 53–62 (2019). https://doi.org/10.1007/s10008-018-4093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4093-x

Keywords

Navigation