Abstract
Ionic conductivity is an important separator parameter influencing the cycle life and rate capability of lithium-ion batteries (LIBs). To improve the ionic conductivity of polyvinylidene fluoride (PVdF) fibers, polystyrene (PS) was added into the PVdF electrospinning solution for the fabrication of PVdF/PS hybrid fibers. The morphology and electrochemical property were regulating by tuning the PS dosage. Owing to the increasing mass ratio of the adhesion structure, not only the porosity, uptake, and average pore size of PVdF/PS hybrid fibers simultaneously decreased but also the mechanical strength enhanced (15.9 MPa) with the increasing PS content. In addition, the ionic conductivity increased with increasing PS content (1.58 mS cm−1 for PVdF/PS hybrid fiber with 20-wt% PS) ascribing to the increase of the amorphous region. Benefiting from the characteristic of PVdF, the as-prepared PVdF/PS hybrid fibers with non-flammability can significantly improve the LIBs safety. Significantly, the cells with PVdF/PS hybrid fibers (15-wt% PS) displayed satisfactory cycling performance (159.9 mAh g−1 at 0.2 C for 45 cycles after testing at 0.1 C for 5 cycles) and rate capability, indicating that PVdF/PS hybrid fibers are the promising separator candidates for the applications in LIBs.
This is a preview of subscription content, access via your institution.








References
- 1.
Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core-shell structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9
- 2.
Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11(12):1031–1039
- 3.
Kim M, Kim JK, Park JH (2015) Clay nanosheets in skeletons of controlled phase inversion separators for thermally stable Li-ion batteries. Adv Funct Mater 25(22):3399–3404
- 4.
Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462
- 5.
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886
- 6.
Nunes-Pereira J, Costa CM, Lanceros-Mendez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398
- 7.
Jiang X, Xiao L, Ai X, Yang H, Cao Y (2017) Novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by coaxial electrospun route for safe lithium-ion battery. J Mater Chem A 5(44):23238–23242
- 8.
Liu X, Song K, Lu C, Huang Y, Duan X, Li S, Ding Y (2018) Electrospun PU@GO separators for advanced lithium ion batteries. J Membr Sci 555:1–6
- 9.
Wang M, Xin C, Wang H, Wu H, Jin X, Huang C (2017) Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J Mater Chem A 5(1):311–318
- 10.
Zhao L, Huang Y, Liu B, Huang Y, Song A, Lin Y, Wang M, Li X, Cao H (2018) Gel polymer electrolyte based on polymethyl methacrylate matrix composited with methacrylisobutyl-polyhedral oligomeric silsesquioxane by phase inversion method. Electrochim Acta 278:1–12
- 11.
Zhang H, Liu J, Guan M, Shang Z, Sun Y, Lu Z, Li H, An X, Liu H (2018) Nano-fibrillated cellulose (NFC) as a pore size mediator in the preparation of thermal resistant separators for lithium ion batteries. ACS Sustain Chem Eng 6(4):4838–4844
- 12.
Jung JW, Lee CL, Yu S, Il-Doo K (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4(3):703–750
- 13.
Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab S, El-Newehy M, Ding B (2014) Sandwich-structured PVDF/PMMA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A 2(35):14511–14518
- 14.
Deng F, Wang X, He D, Hu J, Gong C, Ye Y, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89
- 15.
Zhai Y, Xiao K, Yu J, Ding B (2016) Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber separators for lithium ion batteries with enhanced thermostability and improved electrolyte wettability. J Power Sources 325:292–300
- 16.
Zhu Z, Liu Z, Zhong L, Song C, Shi W, Cui F, Wang W (2018) Breathable and asymmetrically superwettable Janus membrane with robust oil-fouling resistance for durable membrane distillation. J Membr Sci 563:602–609
- 17.
Peng L, QiaoYing ZL, Dahu Y, Haixiang S, HouYingfei LS, Qi L (2015) Electrospun PS/PAN fibers with improved mechanical property for removal of oil from water. Mar Pollut Bull 93:75–80
- 18.
Wu J, An A, Guo J, Lee E, Farid M, Jeong S (2017) CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability. Chem Eng J 314:526–536
- 19.
Wilson C, María J, Amparo L, Jose M (2017) Use of phase change materials to develop electrospun coatings of interest in food packaging applications. J Food Eng 192:122–128
- 20.
Ke H, Feldman E, Guzman P, Cole J, Wei Q, Chu B, Alkhudhiri A, Alrasheed R, Hsiao BS (2016) Electrospun polystyrene nanofibers for direct contact membrane distillation. J Membr Sci 515:86–97
- 21.
Sun M, Ding B, Yu J, Hsieh Y-L, Sun G (2012) Self-assembled monolayer of 3-mercaptopropionic acid on electrospun polystyrene membranes for Cu2+ detection. Sensor Actuators B Chem 161(1):322–328
- 22.
Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries-preparation and electrochemical characterization. J Power Sources 202:299–307
- 23.
Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138(34):11044–11050
- 24.
Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 58(8):1173–1243
- 25.
Zhu Z, Wang W, Qi D, Luo Y, Liu Y, Xu Y, Cui F, Wang C, Chen X (2018) Calcinable polymer membrane with revivability for efficient oily-water remediation. Adv Mater 1801870
- 26.
Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2005) Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning. J Electrochem Soc 152(2):A295–A300
- 27.
Choi SW, Kim JR, Ahn YR, Jo SM, Cairns EJ (2007) Characterization of electrospun PVDF fiber-based polymer electrolytes. Chem Mater 19(1):104–115
- 28.
Yanilmaz M, Dirican M, Zhang X (2014) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133:501–508
- 29.
Liang Y, Cheng S, Zhao J, Zhang C, Sun S, Zhou N, Qiu Y, Zhang X (2013) Heat treatment of electrospun polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries. J Power Sources 240:204–211
- 30.
Kim Y-J, Ahn CH, Lee MB, Choi M-S (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127(1-2):137–142
- 31.
Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica-polyetherimide-polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558
- 32.
Tobishima S, Ogino Y, Watanabe Y (2003) Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. J Appl Electrochem 33(2):143–150
- 33.
Xiao K, Zhai Y, Yu J, Ding B (2015) Nanonet-structured poly(m-phenylene isophthalamide)-polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Adv 5(68):55478–55485
- 34.
Zhu Z, Liu Y, Hou H, Shi W, Qu F, Cui F, Wang W (2018) Dual-bioinspired design for constructing membranes with superhydrophobicity for direct contact membrane distillation. Environ Sci Technol 52(5):3027–3036
- 35.
Suriyakumar S, Raja M, Angulakshmi N, Nahm KS, Stephan AM (2016) A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Adv 6(94):92020–92027
Funding
This work is supported by the National Natural Science Foundation of China (Nos. 51503079 and 51103063), the Program for Science and Technology of Zhejiang Province (Nos. 2017C31071 and 2018C37075), and the Program for Science and Technology of Jiaxing (No. 2016AY13008).
Author information
Affiliations
Corresponding authors
Electronic supplementary material
ESM 1
(DOCX 807 kb)
Rights and permissions
About this article
Cite this article
Liu, H., Wang, X., Kuang, C. et al. Polyvinylidene fluoride/polystyrene hybrid fibers with high ionic conductivity and enhanced mechanical strength as lithium-ion battery separators. J Solid State Electrochem 22, 3579–3587 (2018). https://doi.org/10.1007/s10008-018-4068-y
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- PVdF/PS hybrid fibers
- Improved ionic conductivity
- Enhanced mechanical strength
- Lithium-ion batteries