Skip to main content
Log in

Electrochemical characterization of fine-grained blast furnace sludge after acid leaching using carbon paste electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper deals with the study of electrochemical properties of blast furnace sludge after acid leaching (BFSL) using modified carbon paste electrodes (CPEs) in acidic (1 M HCl) and alkaline (1 M NaOH) electrolyte. A polyamide holder with exchangeable tips was developed. The effect of their geometric parameters on the electrochemical response was monitored. The electrochemical characterization was performed by cyclic voltammetry (CV) at different scan rates. The hematite and magnetite served as comparative model modifiers. The identification of reaction products was performed using the RTG diffraction and SEM/EDX analyses. It was found that reduction reactions are suppressed at acidic pH. On the contrary, in an alkaline media, a significant peak corresponding to the electrode reduction of iron oxides based on the scheme Fe3+ → Fe2+ → Fe0 was identified in the BFSL reduction region. XRD and SEM analyses of the active surface of modified CPE showed the formation of nanostructured Fe. The results provide direction for the further use of BFSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. López-Delgado A, Pérez C, López FA (1998) Sorption of heavy metals on blast furnace sludge. Water Res 32(4):989–996

    Article  Google Scholar 

  2. Busé R, Mombelli D, Mapelli C (2014) Metals recovery from furnaces dust: Waelz process. La Metallurgia Italiana 106(5):19–27

    Google Scholar 

  3. Schneeberger G, Antrekowitsch J (2011) New developments in the recycling of zinc containing dusts from steel and foundry industry, European metallurgical conference, EMC 2011, Düsseldorf, 2011. Germany, EU

  4. Drobíková K, Plachá D, Motyka O, Gabor R, Mamulová Kultáková K, Vallová S, Seidlerová J (2016) Recycling of blast furnace sludge by briquetting with starch binder: waste gas from thermal treatment utilizable as a fuel. Waste Manag 48:471–477

    Article  CAS  PubMed  Google Scholar 

  5. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57

    Article  Google Scholar 

  6. Huang X, Zhao H, Li X, Qiu W, Wu W (2007) Performance of planar SOFCs with doped strontium titanate as anode materials. Fuel Cells Bull 7:12–16

    Article  Google Scholar 

  7. Langová Š, Leško J, Matýsek D (2009) Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95(3-4):179–182

    Article  CAS  Google Scholar 

  8. Asadi Zeydabadi B, Mowla D, Shariat MH, Fathi Kalajahi J (1997) Zinc recovery from blast furnace flue dust. Hydrometallurgy 47(1):113–125

    Article  CAS  Google Scholar 

  9. Steer JM, Griffiths AJ (2013) Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy 140:34–41

    Article  CAS  Google Scholar 

  10. Zhang D, Zhang X, Yang T, Rao S, Hu W, Liu W, Chen L (2017) Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy 169:219–228

    Article  CAS  Google Scholar 

  11. Vereš J, Lovás M, Jakabský Š, Šepelák V, Hredzák S (2012) Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy 129–130:67–73

    Article  CAS  Google Scholar 

  12. Li G, Wang D, Chen Z (2009) Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process. J Mater Sci Technol (Shenyang) 25:767–771

    CAS  Google Scholar 

  13. Park S, Seong C, Piao Y (2015) A simple dip-coating approach for preparation of three-dimensional multilayered graphene-metal oxides hybrid nanostructures as high performance lithium-ion battery electrodes. Electrochim Acta 176:1182–1190

    Article  CAS  Google Scholar 

  14. Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. In: Lochmüller CH (ed) Analytical chemistry. CRC Press, Boca Raton

    Google Scholar 

  15. Bachiller PE, Tascon Garcia ML, Vazquez Barbado MD, Sanchez-Batanero P (1994) Electroanalytical study of copper and iron compounds in the solid state: application to copper ferrite characterization. J Electroanal Chem 367(1-2):99–108

    Article  Google Scholar 

  16. Fetisov VB, Ermanov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) Electrochemical dissolution of magnetite in acid solutions. J Solid State Electrochem 8:565–571

    Article  CAS  Google Scholar 

  17. Rodríguez-López A, Torres-Torres D, Mojica-Gomez J, Estrada-Arteaga C, Antaňo-López R (2011) Characterization by electrochemical impedance spectroscopy of magnetite nanoparticles supported on carbon paste electrode. Electrochim Acta 56(23):8078–8084

    Article  CAS  Google Scholar 

  18. Mouhandess MT, Chassagneux F, Durand B, Sharara ZZ, Vittori O (1985) Some advantages of carbon paste electrodes in the morphological study of finely divided iron oxides. J Mater Sci 20(9):3289–3299

    Article  CAS  Google Scholar 

  19. Grygar T (1997) Dissolution of pure and substituted goethites controlled by the surface reaction under conditions of abrasive stripping voltammetry. J Solid State Electrochem 1(1):77–82

    Article  CAS  Google Scholar 

  20. Grygar T (1998) Phenomenological kinetics of irreversible electrochemical dissolution of meta-oxide microparticles. J Solid State Electrochem 2(3):127–136

    Article  CAS  Google Scholar 

  21. Švancara I, Schachl K (1999) Testing of unmodified carbon paste electrodes. Chem List 93:490–499

    Google Scholar 

  22. Linquist J (1968) A new carbon paste electrode holder and a simple method for preparing reproducible electrode surfaces. J Electroanal Chem 18(1-2):204–205

    Article  Google Scholar 

  23. Švancara I, Metelka R, Vytřas K (2005). Piston-driven carbon paste electrode holders for electrochemical measurements, sensing in Electroanalysis, Pardubice, 2005. Czech Republic, EU

  24. Arduini F, Di Giorgio F, Amine A, Cataldo F, Moscone D, Palleschi G (2010) Electroanalytical characterization of carbon black nanomaterial paste electrode: development of highly sensitive tyrosinase biosensor for catechol detection. Anal Lett 43(10-11):1688–1702

    Article  CAS  Google Scholar 

  25. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, New Jersey

    Book  Google Scholar 

  26. Afraz A, Rafati AA, Najafi M (2014) Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C Mater Biol Appl 44:58–68

    Article  CAS  PubMed  Google Scholar 

  27. Tipsawat P, Wongpratat U, Phumying S, Chanlek N, Chokprasombat K, Maensiri S (2018) Magnetite (Fe3O4) nanoparticles: synthesis, characterization and electrochemical properties. Appl Surf Sci 446:287–292

    Article  CAS  Google Scholar 

  28. Bachiller P, Lorenzo L, Tascón ML, Vásquez MD, Sánchez-Batanero P (1994) Electrochemical study of iron(II) and iron(III) compound mixtures in the solid state. Application to magnetite characterization. J Electroanal Chem 371(1–2):161–166

    Google Scholar 

  29. Shimizu K, Tschulik K, Compton RG (2016) Exploring the mineral–water interface: reduction and reaction kinetics of single hematite (α-Fe2O3) nanoparticles. Chem Sci 7(2):1408–1414

    Article  CAS  PubMed  Google Scholar 

  30. Ivanova YA, Monteiro JF, Teixeira LB, Vitorino N, Kovalevsky AV, Frade JR (2017) Designed porous microstructures for elektrochemicalreduction of bulk hematite ceramics. Mater Des 122:307–314

    Article  CAS  Google Scholar 

  31. Monteiro JF, Ivanova YA, Kovalevsky AV, Ivanou DK, Frade JR (2016) Reduction of magnetite to metallic iron in strong alkaline medium. Electrochim Acta 193:284–292

    Article  CAS  Google Scholar 

  32. Allanore A, Lavelaine H, Valentin G, Birat JP, Delcroix P, Lapicque F (2010) Observation and modeling of the reduction of hematite particles to metal in alkaline solution by electrolysis. Electrochim Acta 55(12):4007–4013

    Article  CAS  Google Scholar 

  33. Joiret S, Keddam M, Nóvoa XR, Pérez MC, Rangel C, Takenouti H (2002) Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem Concr Compos 24(1):7–15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the Ministry of Education of the Czech Republic research project nos. SP2017/50 and no. SP2018/79. Some of the analytical work was performed using equipment that was financed by the project “Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy”, reg. no. LO1406, and supported by the “Research and Development for Innovations Operational Programme”, which is financed by structural funds from the European Union and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Novák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novák, V., Raška, P., Matýsek, D. et al. Electrochemical characterization of fine-grained blast furnace sludge after acid leaching using carbon paste electrode. J Solid State Electrochem 22, 3457–3466 (2018). https://doi.org/10.1007/s10008-018-4056-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4056-2

Keywords

Navigation