Skip to main content

Advertisement

Log in

Mechanochemically prepared polyaniline and graphene-based nanocomposites as electrodes of supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Conductive nanocomposites based on polyaniline and graphene (PAni/Gr) were prepared by cheap and efficient mechanochemical method. The uniform distribution of Gr nanoparticles in the polymer matrix and the ordering of the polymer chains due to the action of mechanical shear stresses, which were established by TEM, stipulated high specific capacitance about 920 F g−1 in − 0.2–1.0 V vs. Ag/AgCl potential range. PAni/Gr-based electrodes are able to provide the specific capacitance of ~ 750 F g−1 at 2 A g−1 in symmetric supercapacitors (SSC) and stably cycle at the operating voltage V = 0.65 V for 10,000 charge-discharge cycles with 96% capacitance retention, whereas the increasing of V leads to the loss of stability as a result of the cathode degradation. PAni/Gr-based SSC possessed improved self-discharge showed high rate capability, and the specific power of such SSC could reach ~ 10 kW kg−1 at the specific energy of ~ 18 W h kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energy Rev 58:1189–1206

    Article  CAS  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  PubMed  Google Scholar 

  3. Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50(7):1699–1701

    Article  CAS  Google Scholar 

  4. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  5. Simon P, Burke A (2008) Nanostructured carbons: double-layer capacitance and more. Electrochem Soc Interface 17:38–43

    CAS  Google Scholar 

  6. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22):6816–6854

    Article  CAS  PubMed  Google Scholar 

  7. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borenstein A, Hanna O, Attias R, Luski S, Broussebc T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672

    Article  CAS  Google Scholar 

  9. Hong S-C, Sanghoon K, Jang W-J, Han T-H, Hong J-P, Oh J-S, Hwang T, Lee Y, Lee J-H, Nam J-D (2014) Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv 4(89):48276–48284

    Article  CAS  Google Scholar 

  10. Chuang C-M, Huang C-W, Teng H, Ting J-M (2012) Hydrothermally synthesized RuO2/carbon nanofibers composites for use in high-rate supercapacitor electrodes. Comp Sci Technol 72(13):1524–1529

    Article  CAS  Google Scholar 

  11. Vonlanthen D, Lazarev P, See KA, Wudl F, Heeger AJ (2014) A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv Mater 26(30):5095–5100

    Article  CAS  PubMed  Google Scholar 

  12. Peng C, Hu D, Chen GZ (2011) Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on ‘vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem Commun 47(14):4105–4107

    Article  CAS  Google Scholar 

  13. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586

    Article  CAS  Google Scholar 

  14. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40(14):2591–2611

    Article  CAS  Google Scholar 

  15. Li Z-F, Zhang H, Liu Q, Sun L, Stanciu L, Xie J (2013) Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl Mater Interfaces 5(7):2685–2691

    Article  CAS  PubMed  Google Scholar 

  16. Parveen N, Ansari MO, Cho MH (2016) Route to high surface area, mesoporosity of polyaniline–titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Eng Chem Res 55(1):116–124

    Article  CAS  Google Scholar 

  17. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  18. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    CAS  PubMed  Google Scholar 

  19. Wang H, Liu R, Yang C, Hao Q, Wang X, Gong K, Wu J, Hu Y, Lia Z, Jianga J (2017) Smart and designable graphene–SiO2 nanocomposites with multifunctional applications in silicone elastomers and polyaniline supercapacitors. RSC Adv 7(19):11478–11490

    Article  CAS  Google Scholar 

  20. Xie F, Kou C, Yuan Y, Zhu W, Zhu J, Zhu J, Zhu X, Pezzotti G (2017) High-performance supercapacitor based on polyaniline/poly(vinylidene fluoride) composite with KOH. Energy Technol 5(4):588–598

    Article  CAS  Google Scholar 

  21. Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121(14):7573–7583

    Article  CAS  Google Scholar 

  22. Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as highcapacitance electrode materials for supercapacitors. Sci Rep 7(1):44562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang S, Gao T, Li Y, Li S, Zhou G (2017) Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor. J Solid State Electrochem 21(3):705–714

    Article  CAS  Google Scholar 

  24. Chu H-J, Lee C-Y, Tai N-H (2016) Three-dimensional porous polyaniline/graphene-coated activated carbon fiber electrodes for supercapacitors. RSC Adv 6(112):111465–111471

    Article  CAS  Google Scholar 

  25. Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces 8(33):21261–21269

    Article  CAS  PubMed  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  27. Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2012) Electrochemical performance of mechanochemically prepared polyaniline doped with lithium salt. Synth Met 162(24):2206–2211

    Article  CAS  Google Scholar 

  28. Posudievsky OY, Goncharuk OA, Pokhodenko VD (2010) Mechanochemical preparation of conducting polymers and oligomers. Synth Met 160(1-2):47–51

    Article  CAS  Google Scholar 

  29. Posudievsky OY, Goncharuk OA, Pokhodenko VD (2010) Structure–property relationship in mechanochemically prepared polyaniline. Synth Met 160(5-6):462–467

    Article  CAS  Google Scholar 

  30. Gribkova OL, Nekrasov AA, Ivanov VF, Kozarenko OA, Posudievsky OY, Vannikov AV, Koshechko VG, Pokhodenko VD (2013) Mechanochemical synthesis of polyaniline in the presence of polymeric sulfonic acids of different structure. Synth Met 180:64–72

    Article  CAS  Google Scholar 

  31. Gutiérrez AR, Vázquez RA, Moggio I, Arias E, Coreño O, Maldonado JL, Ramos-Ortíz G, Rodríguez O, Jiménez-Barrera RM (2015) Mechanosynthesis of a phenylenedivinylidenebisquinoline. optical, morphological and electroluminescence properties. J Mol Struct 1086:138–145

    Article  CAS  Google Scholar 

  32. Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett 4:305–309

    Article  CAS  Google Scholar 

  33. Zhou ZH, Zhang XX, Tian D, Xiong R, Lu CH (2013) Solvent free synthesis of polyaniline with improved molecular weight through solid state mechanochemical milling at ambient temperature. Mater Res Innov 17(2):84–91

    Article  CAS  Google Scholar 

  34. Xia H, Wang Q, Li K, Hu G-H (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93(1):378–386

    Article  CAS  Google Scholar 

  35. Niu Z, Chen Y, Feng J (2016) Preparation, structure, and property of wood flour incorporated polypropylene composites prepared by a solid-state mechanochemical method. J Appl Polym Sci 133:43108

    Article  CAS  Google Scholar 

  36. Wang M, Zhang X, Zhang W, Tian D, Lu C (2013) Thermoplastic polyurethane composites prepared from mechanochemically activated waste cotton fabric and reclaimed polyurethane foam. J Appl Polym Sci 128(6):3555–3563

    Article  CAS  Google Scholar 

  37. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2013) Mechanochemically prepared ternary hybrid cathode material for lithium batteries. Electrochim Acta 109:866–873

    Article  CAS  Google Scholar 

  38. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Effect of host–guest versus core–shell structure on electrochemical characteristics of vanadium oxide/polypyrrole nanocomposites. Electrochim Acta 58:442–448

    Article  CAS  Google Scholar 

  39. Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196(6):3331–3341

    Article  CAS  Google Scholar 

  40. Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2015) Effect of the composition and post-synthesis heat treatment on the electrochemical characteristics of polypyrrole/V2O5 nanocomposites prepared by a mechanochemical method. Theor Exp Chem 51(3):163–169

    Article  CAS  Google Scholar 

  41. Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2015) Advanced electrochemical performance of hybrid nanocomposites based on LiFePO4 and lithium salt doped polyaniline. J Solid State Electrochem 19(9):2733–2740

    Article  CAS  Google Scholar 

  42. Kozarenko OA, Khazieieva OA, Dyadyun VS, Posudievsky OY, Koshechko VG, Pokhodenko VD (2015) Mechanochemical preparation of a MoS2/polyaniline nanocomposite with high electrochemical capacity. Theor Exp Chem 51(5):293–300

    Article  CAS  Google Scholar 

  43. Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817–5819

    Article  CAS  Google Scholar 

  44. Posudievsky OY, Khazieieva OA, Cherepanov VV, Koshechko VG, Pokhodenko VD (2013) High yield of graphene by dispersant–free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15(11):2046–2055

    Article  CAS  Google Scholar 

  45. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2014) Mechanochemical delamination of graphite in the presence of various inorganic salts and formation of graphene by its subsequent liquid exfoliation. Theor Exp Chem 50(2):103–109

    Article  CAS  Google Scholar 

  46. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent–free mechanochemical oxidation of graphite. J Mater Chem 22(25):12465–12467

    Article  CAS  Google Scholar 

  47. Posudievsky OY, Kozarenko OA, Khazieieva OA, Koshechko VG, Pokhodenko VD (2013) Ultrasound–free preparation of graphene oxide from mechanochemically oxidized graphite. J Mater Chem A 1(22):6658–6663

    Article  CAS  Google Scholar 

  48. León V, Rodriguez AM, Prieto P, Prato M, Vázquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8(1):563–571

    Article  CAS  PubMed  Google Scholar 

  49. Huang JY, Yasuda H, Mori H (1999) Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett 303(1-2):130–134

    Article  CAS  Google Scholar 

  50. Ong TS, Yang H (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38(15):2077–2085

    Article  CAS  Google Scholar 

  51. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24(3):779–789

    Article  CAS  Google Scholar 

  52. Hirsch PB, Howie А, Nicholson RB, Pashley DW, Whelan МJ (1968) Electron spectroscopy of thin crystals. Mir, Мoscow (in Russian)

    Google Scholar 

  53. Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81

    Article  CAS  Google Scholar 

  54. Basko DM, Piscanec S, Ferrari AC (2009) Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys Rev B 80(16):165413–165423

    Article  CAS  Google Scholar 

  55. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3(4):210–215

    Article  CAS  PubMed  Google Scholar 

  56. Bernard M-C, Hugot-Le Goff A (1997) Raman spectroscopy for the study of polyaniline. Synth Met 85:1145–l146

    Article  CAS  Google Scholar 

  57. Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline @reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73

    Article  CAS  Google Scholar 

  58. Pud AA (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66(1):1–18

    Article  CAS  Google Scholar 

  59. Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1(82):2385–2400

    Article  Google Scholar 

  60. Balducci A, Belanger D, Brousse T, Long JW, Sugimoto WA (2017) Guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J Electrochem Soc 164(7):A1487–A1488

    Article  CAS  Google Scholar 

  61. Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P, Shelke M, Ogale S (2016) 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci Rep 6(1):21002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Z, Wang G, Li Y, Zhang X, Qiao N, Wang J, Zhou J, Liu Z, Hao Z (2014) A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications. J Mater Chem A 2(39):16715–16722

    Article  CAS  Google Scholar 

  63. Chang C-M, Hu Z-H, Lee T-Y, Huang Y-A, Ji W-F, Liu W-R, Yeh J-M, Wei Y (2016) Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. J Mater Chem A 4(23):9133–9145

    Article  CAS  Google Scholar 

  64. Ghenaatiana HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159(17-18):1717–1722

    Article  CAS  Google Scholar 

  65. Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6(18):16312–16319

    Article  CAS  PubMed  Google Scholar 

  66. Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3(1):3568

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wu J, Zhang Q, Zhou A, Huang Z, Bai H, Li L (2016) Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv Mater 28(46):10211–10216

    Article  CAS  PubMed  Google Scholar 

  68. Li D, Li Y, Feng Y, Hu W, Feng W (2015) Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J Mater Chem A 3(5):2135–2143

    Article  CAS  Google Scholar 

  69. Liu H, Zhang W, Song H, Chen X, Zhou J, Ma Z (2014) Tremella-like graphene/polyaniline spherical electrode material for supercapacitors. Electrochim Acta 146:511–517

    Article  CAS  Google Scholar 

  70. Huang F, Chen D (2012) Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors. Energy Environ Sci 5(2):5833–5841

    Article  CAS  Google Scholar 

  71. Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159(17-18):1717–1722

    Article  CAS  Google Scholar 

  72. Arjomandi J, Lee JY, Movafagh R, Moghanni-Bavil-Olyaei H, Parvin MH (2018) Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem 819:100–108

    Article  CAS  Google Scholar 

  73. Male U, Srinivasan P, Singu BS (2015) Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. Int Nano Lett 5(4):231–240

    Article  CAS  Google Scholar 

  74. Boddula R, Bolagam R, Srinivasan P (2018) Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics 24(5):1467–1474

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Targeted Research & Development Initiatives of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine and Targeted Comprehensive Fundamental Research Program of the National Academy of Sciences of Ukraine “Fundamental problems of creating new nanomaterials and nanotechnologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Yu. Posudievsky.

Electronic supplementary material

ESM 1

(PDF 1104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posudievsky, O.Y., Kozarenko, O.A., Dyadyun, V.S. et al. Mechanochemically prepared polyaniline and graphene-based nanocomposites as electrodes of supercapacitors. J Solid State Electrochem 22, 3419–3430 (2018). https://doi.org/10.1007/s10008-018-4052-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4052-6

Keywords

Navigation