Skip to main content
Log in

Selective and low potential electrocatalytic oxidation of NADH using a 2,2-diphenyl-1-picrylhydrazyl immobilized graphene oxide-modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

DPPH (2,2-diphenyl-1-picrylhydrazil), a free radical-containing organic compound, is used widely to evaluate the antioxidant properties of plant constituents. Here, we report an efficient electroactive DPPH molecular system with excellent electrocatalytic sensor properties, which is clearly distinct from the traditional free radical-based quenching mechanism. This unusual molecular status was achieved by the electrochemical immobilization of graphene oxide (GO)-stabilized DPPH on a glassy carbon electrode (GCE). Potential cycling of the DPPH adsorbed-GCE/GO between − 1 and 1 V (Ag/AgCl) in a pH 7 solution revealed a stable and well-defined pair of redox peaks with a standard electrode potential, E0′ = 0 ± 0.01 V (Ag/AgCl). Several electrochemical characterization studies as well as surface analysis of the GCE/GO@DPPH-modified electrode by transmission electron microscopy, Raman, and infrared spectroscopy collectively identified the imine/amine groups as the redox centers of the electroactive DPPH on GO. The use of different carbon-supports showed that only oxygen-functionalized GO and MWCNTs could provide major electroactivity for DPPH. This highlights the importance of a strong hydrogen-bonded network structure assisted by the concomitant π-π interactions between the organic moiety and oxygen function groups of carbon for the high electroactivity and stability of the GCE/GO@DPPH-NH/NH2-modified electrode. The developed electrode exhibited remarkable performance towards the electrocatalytic oxidation of NADH at 0 V (Ag/AgCl). The amperometric i-t sensing of NADH showed high sensitivity (488 nA μM−1 cm−2) and an extended linear range (50 to 450 μM) with complete freedom from several common biochemical/chemical interferents, such as ascorbic acid, hydrazine, glucose, cysteine, citric acid, nitrate, and uric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xie J, Schaich KM (2014) Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J Agric Food Chem 62(19):4251–4260

    Article  CAS  PubMed  Google Scholar 

  2. Perez-Roses R, Risco E, Vila R, Penalver P, Cañigueral S (2016) Biological and nonbiological antioxidant activity of some essential oils. J Agric Food Chem 64(23):4716–4724

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ (2011) Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem 59(23):12361–12367

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Rajini PS (2004) Free radical scavenging activity of an aqueous extract of potato peel. Food Chem 85(4):611–616

    Article  CAS  Google Scholar 

  5. Nuutila AM, Puupponen-Pimiä R, Aarni M, Oksman-Caldentey KM (2003) Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chem 81(4):485–493

    Article  CAS  Google Scholar 

  6. Zhang W, Zeng Z, Wei J (2017) Electrochemical study of DPPH radical scavenging for evaluating the antioxidant capacity of carbon nanodots. J Phys Chem C 121(34):18635–18642

    Article  CAS  Google Scholar 

  7. Amatatongchai M, Laosing S, Chailapakul O, Nacapricha D (2012) Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode. Talanta 97:267–272

    Article  CAS  PubMed  Google Scholar 

  8. Chua LS, Rahaman NL, Adnan NA, Eddie Tan TT (2013) Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem 2013:1–8. https://doi.org/10.1155/2013/313798

    Article  CAS  Google Scholar 

  9. Wang T, Jonsdottir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116(1):240–248

    Article  CAS  Google Scholar 

  10. Balamurugan J, Thanh TD, Kim NH, Lee JH (2016) Facile fabrication of FeN nanoparticles/nitrogen-doped graphene core-shell hybrid and its use as a platform for NADH detection in human blood serum. Biosens Bioelectron 83:68–76

    Article  CAS  PubMed  Google Scholar 

  11. Gupta B, Kumar N, Panda K, Kanan V, Joshi S, Visoly-Fisher I (2017) Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci Reports 7 doi: https://doi.org/10.1038/srep45030

  12. Aparecida I, Ribeiro L, Yotsumoto-Neto S, Santos WTP, Fernandes RN, Goulart MOF, Damos FS, Luz RCS (2017) Improved NADH electroanalysis on nickel(II) phthalocyanine tetrasulfonic acid/calf thymus deoxyribo nucleic acid/reduced graphene oxide composite. J Braz Chem Soc 28:1768–1778

    Google Scholar 

  13. Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G (2016) Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors. Biosens Bioelectron 86:308–314

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Zhang X, Ju H (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal Chem 79(2):453–458

    Article  CAS  PubMed  Google Scholar 

  15. Puchakayala S, Annamalai SK (2012) Electrocatalytic oxidation of NADH using alizarin immobilized carbon nanotube modified electrode. ECS Trans 41(27):9–14

    Article  Google Scholar 

  16. Tığ GA (2017) Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite. Talanta 175:382–389

    Article  CAS  Google Scholar 

  17. Bihar E, Deng Y, Miyake T, Saadaoui M, Malliaras GG, Rolandi M (2016) A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci Reports 6, 1. DOI: https://doi.org/10.1038/srep275826

  18. Kim DM, Kim MY, Reddy SS, Cho J, Cho CH, Jung S, Shim YB (2013) Electron-transfer mediator for a NAD-glucose dehydrogenase-based glucose sensor. Anal Chem 85(23):11643–11649

    Article  CAS  PubMed  Google Scholar 

  19. Achmann S, Hermann M, Hilbrig F, Jérôme V, Hämmerle M, Freitag R, Moos R (2008) Direct detection of formaldehyde in air by a novel NAD+-and glutathione-independent formaldehyde dehydrogenase-based biosensor. Talanta 75(3):786–791

    Article  CAS  PubMed  Google Scholar 

  20. Quan D, Shin W (2010) A nitrite biosensor based on co-immobilization of nitrite reductase and viologen-modified chitosan on a glassy carbon electrode. Sensors 10(6):6241–6256

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y-C, Su Y-M, Chen K-J, Huang W-C, Kuob Y-L, Lin SD (2017) Electrocatalysis of a enhancement of a screen-printed carbon electrode by modification with Trisoctahedral gold nanocrystals for H2O2 and NADH sensing application. J Chem Technol Biotechnol 92(9):2460–2467

    Article  CAS  Google Scholar 

  22. Aneesh K, Berchmans S (2017) Enhanced peroxidase-like activity of CuWO4 nanoparticles for the detection of NADH and hydrogen peroxide. Sensors Actuators B Chem 253:723–730

    Article  CAS  Google Scholar 

  23. Canevari TC, Cincotto FH, Gomes D, Landers R, Toma HE (2017) Magnetite nanoparticles bonded carbon quantum dots magnetically confined onto screen printed carbon electrodes and their performance as electrochemical sensor for NADH. Electroanalysis 29(8):1968–1975

    Article  CAS  Google Scholar 

  24. Gligor D, Dilgin Y, PopescuI C, Gorton L (2005) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124–3128

    Article  CAS  Google Scholar 

  25. Lee L, Leroux YR, Hapiot P, Downard AJ (2015) Amine-terminated monolayers on carbon: preparation, characterization, and coupling reactions. Langmuir 31(18):5071–5077

    Article  CAS  PubMed  Google Scholar 

  26. Sharifi E, Salimi A, Shams E (2013) Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens Bioelectron 45:260–266

    Article  CAS  PubMed  Google Scholar 

  27. Roushani M, Hoseini SJ, Azadpour M, Heidari V, Bahrami M, Maddahfar M (2016) Electrocatalytic oxidation behavior of NADH at Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination. Mater Sci Engg C 67:237–246

    Article  CAS  Google Scholar 

  28. Chen CH, Chen YC, Lin MS (2013) Amperometric determination of NADH with Co3O4 nanosheet modified electrode. Biosens Bioelectron 42:379–384

    Article  CAS  PubMed  Google Scholar 

  29. Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7):3959–3968

    Article  CAS  PubMed  Google Scholar 

  30. Balamurugan A, Ho KC, Chen SM, Huang TY (2010) Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode. Colloids Surf A: Physicochem Eng Asp 362(1):1–7

    Article  CAS  Google Scholar 

  31. Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75(5):1307–1314

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, Liu Y, Liu X, Lu X, Liu X (2016) Construction of a highly sensitive NADH sensing platform based on PDDA-rGO nanocomposite modified electrode. Ionics 22(11):2225–2233

    Article  CAS  Google Scholar 

  33. Topcu E, Dagci K, Alanyahoglu M (2016) Electrochemical immunoassays based on graphene: a review. Electroanalysis 28:1–13

    Article  CAS  Google Scholar 

  34. Roushani M, Karami M, Dizajdizi BZ (2017) Amperometric NADH sensor based on a carbon ceramic electrode modified with the natural carotenoid crocin and multi-walled carbon nanotubes. Microchim Acta 184(2):473–481

    Article  CAS  Google Scholar 

  35. Menanteau T, Levillain E, Breton T (2014) Spontaneous grafting of nitrophenyl groups on carbon: effect of radical scavenger on organic layer formation. Langmuir 30(26):7913–7918

    Article  CAS  PubMed  Google Scholar 

  36. Parsa A, Salout SA (2014) Investigation of the antioxidant activity of electro synthesized polyaniline/reduced graphene oxide nanocomposite in a binary electrolyte system on ABTS and DPPH free radicals. J Electroanal Chem 760:113–118

    Article  CAS  Google Scholar 

  37. Madhu R, Karuppiah C, Chen SM, Veerakumar P, Liu SB (2014) Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons. Anal Methods 6(14):5274–5280

    Article  CAS  Google Scholar 

  38. Thirumalraj B, Selvakumar P, Chen SM (2015) An amperometric nitrobenzene electrochemical sensor based on electrochemically activated graphite modified screen printed carbon electrode. Int J Electrochem Sci 10:4173–4182

    CAS  Google Scholar 

  39. Senthil Kumar SM, Chandrasekara Pillai K (2006) Cetyltrimethyl ammonium bromide surfactant-assisted morphological and electrochemical changes in electrochemically prepared nanoclustered iron(III) hexacyanoferrate. J Electroanal Chem 589(1):167–175

    Article  CAS  Google Scholar 

  40. Kumar AS, Shanmugam R, Vishnu N, Chandrasekara Pillai K, Kamaraj S (2016) Electrochemical immoblisation of ellagic acid phytochemical on MWCNT modified carbon electrode surface and its efficient hydrazine electrocatalytic activity in neutral pH. J Electroanal Chem 782:215–224

    Article  CAS  Google Scholar 

  41. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  42. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  43. Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115(40):19761–19781

    Article  CAS  Google Scholar 

  44. Ali MA, Singh C, Srivastava S, Admane P, Agrawal VV, Sumana G, John R, Panda A, Dong L, Malhotra BD (2017) Graphene oxide–metal nanocomposites for cancer biomarker detection. RSC Adv 7(57):35982–35992

    Article  CAS  Google Scholar 

  45. Gayathri P, Kumar AS (2013) An Iron impurity in multiwalled carbon nanotube complexes with chitosan that biomimics the heme-peroxidase function. Chem Euro J 19(50):17103–17112

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner LR (1980) Electrochemical methods. Fundamentals and Applications Wiley, New York

    Google Scholar 

  47. Kumar AS, Gayathri P, Barathi P, Vijayaraghavan R (2012) Improved electric wiring of hemoglobin with impure-multiwalled carbon nanotube/nafion modified glassy carbon electrode and its highly selective hydrogen peroxide biosensing. J Phy Chem C 116(44):23692–23703

    Article  CAS  Google Scholar 

  48. Burke LD, Murphy OJ (1980) The electrochemical behaviour of RuO2-based mixed-oxide anodes in base. J Electroanal Chem 109(1-3):199–212

    Article  CAS  Google Scholar 

  49. Senthil Kumar A, Chandrasekara Pillai K (2000) Studies of electrochemical of RuO2-PVC film electrodes: dependence on oxide preparation temperature. J Solid State Electrochem 4(7):408–416

    Article  Google Scholar 

  50. Dharuman V, Chandrasekara Pillai K (2006) RuO2 electrode surface effects in electrocatalytic oxidation of glucose. J Solid State Electrochem 10(12):967–979

    Article  CAS  Google Scholar 

  51. Zhu L, Zhai J, Yang R, Tian C, Guo L (2007) Electrocatalytic oxidation of NADH with Meldola’s blue functionalized carbon nanotubes electrodes. Biosens Bioelectron 22(11):2768–2773

    Article  CAS  PubMed  Google Scholar 

  52. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikem Y (2008) Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH. Electrochim Acta 53(12):4167–4175

    Article  CAS  Google Scholar 

  53. Tang L, Zeng G, Shen G, Zhang Y, Li Y, Fan C, Liu C, Niu C (2009) Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode. Anal Bioanal Chem 393(6-7):1677–1684

    Article  CAS  PubMed  Google Scholar 

  54. Chakraborty S, Retna Raj C (2007) Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes biopolymer nanocomposite. J Electroanal Chem 609(2):155–162

    Article  CAS  Google Scholar 

  55. Huang T-Y, Huang J-H, Wei H-Y, Ho K-C, Chu C-W (2013) rGO/SWCNT composites as novel electrode materials for electrochemical biosensing. Biosens Bioelectron 43:173–179

    Article  CAS  PubMed  Google Scholar 

  56. Dai H, Xu H, Lin Y, Wu X, Chen G (2009) A highly performing electrochemical sensor for NADH based on graphite/poly(methylmethacrylate) composite electrode. Electrochem Commun 11(2):343–346

    Article  CAS  Google Scholar 

  57. Otte N, Borelli C, Korting HC (2005) Nicotinamide—biologic actions of an emerging cosmetic ingredient. Int J Cosmet Sci 27(5):255–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.C.P. thanks the Korea Federation of Science and Technology Societies (KOFST, Republic of Korea) for offering him the position of Invited Scientist through the “Brain Pool Program.”

Funding

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (MEST) (Grant No. 2017R1A2A1A05001484) and the Department of Science and Technology (DST), Science and Engineering Research Board, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Chandrasekara Pillai or Il-Shik Moon.

Electronic supplementary material

ESM 1

(DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, K.C., Shalini Devi, K.S., Senthil Kumar, A. et al. Selective and low potential electrocatalytic oxidation of NADH using a 2,2-diphenyl-1-picrylhydrazyl immobilized graphene oxide-modified glassy carbon electrode. J Solid State Electrochem 22, 3393–3408 (2018). https://doi.org/10.1007/s10008-018-4029-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4029-5

Keywords

Navigation