Skip to main content
Log in

Study of various aliphatic alcohols as sacrificial agents on photoelectrochemical behavior of nickel-platinum-modified Cr-TiO2 nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Cr-TiO2 nanotubes (Cr-TNTs) have been synthesized via facile one step anodization, followed by co-deposition by nickel-platinum via electroless deposition method. Field-emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD), and Raman spectroscopy have then been used to characterize the surface morphology and structure of the synthetic samples. The optical properties of the compounds have been investigated by ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy. Linear sweep voltammetry (LSV) and chronoamperometry were used to study the photoelectrochemical behavior of the obtained samples. The best electrochemical performer sample (t20) was recognized and evaluated in the presence of various aliphatic alcohols, as sacrificial agents, in photoelectrochemical cells (PEC) water splitting. In terms of sacrificial agent used, photocurrent density production was as follows: methanol > ethanol > glycerol > n-propanol > isopropanol > ethylene glycol. Also methanol concentration was optimized. Thus, both co-deposition of Cr-TNTs and addition of scavengers are promising methods to enhance the performance of catalysts for PEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li W, Bak T, Atanacio A, Nowotny J (2016) Photocatalytic properties of TiO2: effect of niobium and oxygen activity on partial water oxidation. Appl Catal B Environ 198:243–253

    Article  CAS  Google Scholar 

  2. Momeni MM, Ghayeb Y, Ezati F (2018) Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. J Colloid Interface Sci 514:70–82

    Article  CAS  PubMed  Google Scholar 

  3. Hajjaji A, Trabelsi K, Atyaoui A, Gaidi M, Bousselmi L, Bessais B, El Khakani MA (2014) Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films. Nanoscale Res Lett 9(1):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707

    Article  CAS  Google Scholar 

  5. Roy SC, Paulose M, Grimes CA (2007) The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28(31):4667–4672

    Article  CAS  PubMed  Google Scholar 

  6. Liu S, Chen A (2005) Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21(18):8409–8413

    Article  CAS  PubMed  Google Scholar 

  7. Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA (2007) A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 111(20):7235–7241

    Article  CAS  Google Scholar 

  8. Xie Y, Zhou L, Huang H (2007) Bioelectrocatalytic application of titania nanotube array for molecule detection. Biosens Bioelectron 22(12):2812–2818

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Ma X, Wen Y, Xing Y, Zhang Z, Yang H (2010) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. Biosens Bioelectron 25(11):2442–2446

    Article  CAS  PubMed  Google Scholar 

  10. Kafi A, Chen A (2009) A novel amperometric biosensor for the detection of nitrophenol. Talanta 79(1):97–102

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Z, Xie Y, Liu Z, Rong F, Wang Y, Fu D (2011) Covalently immobilized biosensor based on gold nanoparticles modified TiO2 nanotube arrays. J Electroanal Chem 650(2):241–247

    Article  CAS  Google Scholar 

  12. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O'shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal 125:331–349

    Article  CAS  Google Scholar 

  13. Iwasaki M, Hara M, Kawada H, Tada H, Ito S (2000) Cobalt ion-doped TiO2 photocatalyst response to visible light. J Colloid Interface Sci 224(1):202–204

    Article  CAS  PubMed  Google Scholar 

  14. Borgarello E, Kiwi J, Graetzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104(11):2996–3002

    Article  CAS  Google Scholar 

  15. Klosek S, Raftery D (2001) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J Phys Chem B 105(14):2815–2819

    Article  CAS  Google Scholar 

  16. Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A 180(1-2):196–204

    Article  CAS  Google Scholar 

  17. Murakami N, Ono A, Nakamura M, Tsubota T, Ohno T (2010) Development of a visible-light-responsive rutile rod by site-selective modification of iron (III) ion on {111} exposed crystal faces. Appl Catal B Environ 97(1-2):115–119

    Article  CAS  Google Scholar 

  18. Czoska A, Livraghi S, Chiesa M, Giamello E, Agnoli S, Granozzi G, Finazzi E, Valentin CD, Pacchioni G (2008) The nature of defects in fluorine-doped TiO2. J Phys Chem C 112(24):8951–8956

    Article  CAS  Google Scholar 

  19. Momeni MM, Ghayeb Y, Ghonchegi Z (2016) Photocatalytic properties of Cr-TiO2 nanocomposite photoelectrodes produced by electrochemical anodisation of titanium. Surf Eng 32(7):520–525

    Article  CAS  Google Scholar 

  20. López R, Gómez R, Oros-Ruiz S (2011) Photophysical and photocatalytic properties of TiO2-Cr sol-gel prepared semiconductors. Catal Today 166(1):159–165

    Article  CAS  Google Scholar 

  21. Li S, Fu J (2013) Improvement in corrosion protection properties of TiO2 coatings by chromium doping. Corros Sci 68:101–110

    Article  CAS  Google Scholar 

  22. Peng YH, Huang GF, Huang WQ (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv Powder Technol 23(1):8–12

    Article  CAS  Google Scholar 

  23. Chen WT, Chan A, Waterhouse DS, Moriga T, Idriss H, Waterhouse GI (2015) Ni/TiO2: a promising low-cost photocatalytic system for solar H2 production from ethanol-water mixtures. J Catal 326:43–53

    Article  CAS  Google Scholar 

  24. ZhangY YY, Xiao P, Zhang X, Lu L, Li L (2009) Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater Lett 63(28):2429–2431

    Article  CAS  Google Scholar 

  25. Devi LG, Kavitha R (2016) A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci 360:601–622

    Article  CAS  Google Scholar 

  26. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860

    Article  CAS  Google Scholar 

  27. Disdier J, Herrmann JM, Pichat P (1983) Platinum/titanium dioxide catalysts. A photoconductivity study of electron transfer from the ultraviolet-illuminated support to the metal and of the influence of hydrogen. J Chem Soc Faraday Trans 179:651–660

    Article  Google Scholar 

  28. Wang J, Yang P, Cao B, Zhao J, Zhu Z (2015) Photocatalytic carbon-carbon bond formation with concurrent hydrogen evolution on the Pt/TiO2 nanotube. Appl Surf Sci 325:86–90

    Article  CAS  Google Scholar 

  29. Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy Fuel 19(3):1143–1147

    Article  CAS  Google Scholar 

  30. Maeda K, Hashiguchi H, Masuda H, Abe R, Domen K (2008) Photocatalytic activity of (Ga1-xZnx)(N1-xOx) for visible-light-driven H2 and O2 evolution in the presence of sacrificial reagents. J Phys Chem C 112:3447–3452

    Article  CAS  Google Scholar 

  31. Momeni MM (2017) Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes. Rare Metals 36(11):865–871

    Article  CAS  Google Scholar 

  32. Ghanem MA, Al-Mayouf AM, Shaddad MN, Alhoshan MS, Al-Shalawi MN (2015) Chemical deposition of nickel platinum alloy on the surface of TiO2 nanotubes as a catalyst for methanol oxidation. Int J Electrochem Sci 10:3680–3692

    CAS  Google Scholar 

  33. Tian B, Li C, Zhang J (2012) One-step preparation, characterization and visible-light photocatalytic activity of Cr-doped TiO2 with anatase and rutile bicrystalline phases. Chem Eng J 191:402–409

    Article  CAS  Google Scholar 

  34. Pan CC, Wu JC (2006) Visible-light response Cr-doped TiO2-XNX photocatalysts. Mater Chem Phys 100(1):102–107

    Article  CAS  Google Scholar 

  35. Liu J, Liu B, Ni Z, Deng Y, Zhong C, Hu W (2014) Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim Acta 150:146–150

    Article  CAS  Google Scholar 

  36. Patel SK, Gajbhiye NS (2013) Oxygen deficiency induced ferromagnetism in Cr-doped TiO2 nanorods. J Magn Magn Mater 330:21–24

    Article  CAS  Google Scholar 

  37. Fan X, Fan J, Hu X, Liu E, Kang L, Tang C, Ma Y, Wu H, Li Y (2014) Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram Int 40(10):15907–15917

    Article  CAS  Google Scholar 

  38. Choudhury B, Paul S, Ahmed GA, Choudhury A (2015) Adverse effect of Mn doping on the magnetic ordering in Mn doped TiO2 nanoparticles. Mater Res Express 2(9):096104

    Article  CAS  Google Scholar 

  39. Momeni MM, Ghayeb Y, Shafiei M (2017) Preparation and characterization of CrFeWTiO2 photoanodes and their photoelectrochemical activities for water splitting. Dalton Trans 46(37):12527–12536

    Article  CAS  PubMed  Google Scholar 

  40. Banerjee B, Amoli V, Maurya A, Sinha AK, Bhaumik A (2015) Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation. Nanoscale 7(23):10504–10512

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Chang CH, Idriss H (2006) Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M = Pd, Pt or Rh). Appl Catal B Environ 67(3-4):217–222

    Article  CAS  Google Scholar 

  42. Christoforidis KC, Fornasiero P (2017) Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 9:1523–1544

    Article  CAS  Google Scholar 

  43. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2006) Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J Am Chem Soc 128(2):416–417

    Article  CAS  PubMed  Google Scholar 

  44. López CR, Melián EP, Méndez JO, Santiago DE, Rodríguez JD, Díaz OG (2015) Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J Photochem Photobiol A 312:45–54

    Article  CAS  Google Scholar 

  45. Demirci S, Sarıoğlu C (2017) Fast and low-cost fabrication of 1D hematite photoanode in pure water vapor and air atmosphere: investigation the effect of the oxidation atmosphere on the PEC performance of the hematite photoanodes. Int J Hydrog Energy 42(16):11139–11149

    Article  CAS  Google Scholar 

  46. Su J, Geng P, Li X, Zhao Q, Quan X, Chen G (2015) Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance. Nanoscale 7(39):16282–16289

    Article  CAS  PubMed  Google Scholar 

  47. Xiong X, Zhang X, Xu Y (2016) Concentration dependent effect of CuCl2 on the photocatalytic degradation of phenol over anatase, rutile and brookite TiO2. RSC Adv 6(44):38169–38175

    Article  CAS  Google Scholar 

  48. Chiarello GL, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280(2):168–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Ghayeb, Y. & Moosavi, N. Study of various aliphatic alcohols as sacrificial agents on photoelectrochemical behavior of nickel-platinum-modified Cr-TiO2 nanotubes. J Solid State Electrochem 22, 3137–3146 (2018). https://doi.org/10.1007/s10008-018-4022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4022-z

Keywords

Navigation