Journal of Solid State Electrochemistry

, Volume 22, Issue 10, pp 3085–3098 | Cite as

Kinetics of island growth in the framework of “planar diffusion zones” and “3D nucleation and growth” models for electrodeposition

  • S. Politi
  • M. Tomellini
Original Paper


In the electrochemical deposition of thin films, the measurement of the current-time curve does not allow for a direct determination of the nucleus growth law, electrode surface coverage, and mean film thickness. In this work, we present a theoretical approach suitable to gain insight into these quantities from the knowledge of nucleation density, solution parameters, and current-time behavior. The model applies to both isotropic and anisotropic growth rates of nuclei and a study on the effect of nucleus shape and aspect ratio on the kinetics is presented. Computer simulations and experimental results from literature are also discussed in the framework of the present approach.


Kolmogorov-Johnson-Mehl-Avrami theory Phase transformation kinetics Diffusional growth Models of potentiostatic transients 



The authors are indebted with Dr. E. Tamburri for the helpful discussions and the critical reading of the manuscript.


  1. 1.
    Nasirpouri F, (2017) Electrodeposition of nanostructured materials. Springer International PublishingGoogle Scholar
  2. 2.
    Guo L, Oskam G, Radisic A, Hoffmann PM, Searson PC (2011) Island growth in electrodeposition. J Phys D Appl Phys 44(44):443001CrossRefGoogle Scholar
  3. 3.
    Budevski E, Staikov G, Lorenz WJ, (1996) Electrochemical phase formation and growth. VCHGoogle Scholar
  4. 4.
    Milchev A, Heerman L (2003) Electrochemical nucleation and growth of nano- and microparticles: some theoretical and experimental aspects. Electrochim Acta 48(20–22):2903–2913CrossRefGoogle Scholar
  5. 5.
    Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12CrossRefGoogle Scholar
  6. 6.
    Bosco E, Rangarajan S (1982) Electrochemical phase formation (ECPF) and macrogrowth part I: hemispherical models. J Electroanal Chem 134(2):213–224CrossRefGoogle Scholar
  7. 7.
    Bosco E, Rangarajan S (1982) Electrochemical phase formation (ECPF) and macrogrowth part II: two-rate models. J Electroanal Chem 134(2):225–241CrossRefGoogle Scholar
  8. 8.
    Gunawardena G, Hills G, Montenegro I (1982) Electrochemical nucleation: part II. The electrodeposition of silver on vitreous carbon. J Electroanal Chem Interfacial Electrochem 138(2):241–254CrossRefGoogle Scholar
  9. 9.
    Scharifker BR, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889CrossRefGoogle Scholar
  10. 10.
    Ji C, Oskam G, Searson PC (2001) Electrochemical nucleation and growth of copper on Si(111). Surf Sci 492(1–2):115–124CrossRefGoogle Scholar
  11. 11.
    Fardi-Ilkhchy A, Nasirpouri F, Vázquez M, Palmero EM (2017) Electrochemical nucleation and growth of Fe, Pt and Fe–Pt on n-type Si (001). Prot Met Phys Chem Surf 53(1):57–67CrossRefGoogle Scholar
  12. 12.
    Salinas DR, Cobo EO, Garcı́a SG, Bessone JB (1999) Early stages of mercury electrodeposition on HOPG. J Electroanal Chem 470(2):120–125CrossRefGoogle Scholar
  13. 13.
    Gloaguen F, Léger J, Lamy C, Marmann A, Stimming U, Vogel R (1999) Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochim Acta 44(11):1805–1816CrossRefGoogle Scholar
  14. 14.
    Floate S, Hyde M, Compton RG (2002) Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound. J Electroanal Chem 523(1–2):49–63CrossRefGoogle Scholar
  15. 15.
    Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S (2015) Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: kinetic modeling and implications for an easy to handle platform for gas sensing device. Electrochim Acta 157:115–124CrossRefGoogle Scholar
  16. 16.
    Hriban C, Brinza F, Sulitanu N (2008) Nucleation mechanism of Fe nanoclusters inside of membranes nanopores. J Optoelectron Adv Mater 10(12):3487–3491Google Scholar
  17. 17.
    Grubač Z, Metikoš-Huković M (1998) Nucleation and growth of anodic oxide films on bismuth. Electrochim Acta 43(21–22):3175–3181CrossRefGoogle Scholar
  18. 18.
    Hwang BJ, Santhanam R, Lin YL (2001) Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta 46(18):2843–2853CrossRefGoogle Scholar
  19. 19.
    Tamburri E, Orlanducci S, Toschi F, Terranova ML, Passeri D (2009) Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth Met 159(5–6):406–414CrossRefGoogle Scholar
  20. 20.
    Fabricius G, Kontturi K, Sundholm G (1994) Influence of thiourea on the nucleation of copper from acid sulphate solutions. Electrochim Acta 39(16):2353–2357CrossRefGoogle Scholar
  21. 21.
    Bonou L, Eyraud M, Crousier J (1994) Nucleation and growth of copper on glassy carbon and steel. J Appl Electrochem 24(9):906–910CrossRefGoogle Scholar
  22. 22.
    Ortega JM (2000) Electrodeposition of copper on poly(o-aminophenol) modified platinum electrode. Thin Solid Films 360(1–2):159–165CrossRefGoogle Scholar
  23. 23.
    Grujicic D, Pesic B (2002) Electrodeposition of copper: the nucleation mechanisms. Electrochim Acta 47(18):2901–2912CrossRefGoogle Scholar
  24. 24.
    Kolmogorov AN (1937) On the statistical theory of the crystallization of metals. Bull Acad Sci USSR Math Ser 1:355–359Google Scholar
  25. 25.
    Avrami M (1939) Kinetics of Phase Change. I General Theory. J Chem Phys 7(12):1103–1112; (1940) Kinetics of Phase Change. II transformation-time relations for random distribution of nuclei, ibid. 8(2):8212–224; (1941) Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, ibid. 9(2):177–184Google Scholar
  26. 26.
    Johnson W, Mehl R (1939) Reaction kinetics in process of nucleation and growth. Trans Metall AIME 135:416–458Google Scholar
  27. 27.
    Fanfoni M, Tomellini M (1998) The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. Il Nuovo Cimento D 20(7–8):1171–1182CrossRefGoogle Scholar
  28. 28.
    Scharifker BR, Mostany J, Serruya A (1992) On the spatial distribution of nuclei on electrode surfaces. Electrochim Acta 37(13):2503–2510CrossRefGoogle Scholar
  29. 29.
    Mazaira D, Borràs C, Mostany J, Scharifter BR (2009) Three-dimensional nucleation with diffusion-controlled growth: simulation of hierarchical diffusion zones overlap. J Electroanal Chem 631(1–2):22–28CrossRefGoogle Scholar
  30. 30.
    Matthijs E, Langerock S, Michailova E, Heerman L (2004) The potentiostatic transient for 3D nucleation with diffusion-controlled growth: theory and experiment for progressive nucleation. J Electroanal Chem 570(1):123–133CrossRefGoogle Scholar
  31. 31.
    Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth: part I. Number density of active sites and nucleation rates per site. J Electroanal Chem Interfacial Electrochem 177(1–2):13–23CrossRefGoogle Scholar
  32. 32.
    Heerman L, Matthijs E, Langerock S (2001) The concept of planar diffusion zones. Theory of the potentiostatic transient for multiple nucleation on active sites with diffusion-controlled growth. Electrochim Acta 47(6):905–911CrossRefGoogle Scholar
  33. 33.
    Bobbert PA, Wind MM, Vlieger J (1987) Diffusion to an assembly of slowly growing particles on a substrate. Physica A 146(1–2):69–88CrossRefGoogle Scholar
  34. 34.
    Sluyters-Rehbach M, Wijenberg JHOJ, Bosco E, Sluyters JH (1987) The theory of chronoamperometry for the investigation of electrocrystallization: mathematical description and analysis in the case of diffusion-controlled growth. J Electroanal Chem Interfacial Electrochem 236(1–2):1–20CrossRefGoogle Scholar
  35. 35.
    Heerman L, Tarallo A (1999) Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth. J Electroanal Chem 470(1):70–76CrossRefGoogle Scholar
  36. 36.
    Fletcher S, Matthews DB (1981) A new model for the nucleation and growth of thick polycrystal films. I Calculation of volume transforms. J Appl Electrochem 11(1):1–6CrossRefGoogle Scholar
  37. 37.
    Tomellini M (2012) Kinetics of dissolution-precipitation reaction at the surface of small particles: modelling and application. J Mater Sci 47(2):804–814CrossRefGoogle Scholar
  38. 38.
    Alekseechkin NV (2000) On calculating volume fractions of competing phases. J Phys Condens Matter 12(43):9109–9122CrossRefGoogle Scholar
  39. 39.
    Alekseechkin NV (2011) Extension of the Kolmogorov–Johnson–Mehl–Avrami theory to growth laws of diffusion type. J Non-Cryst Solids 357(16–17):3159–3167CrossRefGoogle Scholar
  40. 40.
    Tomellini M (2016) Modeling the kinetics of consecutive phase transitions in the solid state. J Mater Sci 51(2):809–821CrossRefGoogle Scholar
  41. 41.
    Isaev VA, Baraboshkin AN (1994) Three-dimensional electrochemical phase formation. J Electroanal Chem 377(1–2):33–37CrossRefGoogle Scholar
  42. 42.
    Ferenc JS, Néda Z (2007) On the size distribution of Poisson Voronoi cells. Physica A 385(2):518–526CrossRefGoogle Scholar
  43. 43.
    Farjas J, Roura P (2008) Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: grain size distribution in crystallization. Phys Rev B 78(14):144101CrossRefGoogle Scholar
  44. 44.
    Tomellini M (2017) Phase transformation kinetics of Voronoi cells in space tessellation governed by the Kolmogorov–Johnson–Mehl–Avrami model. Phys Lett A 381(12):1067–1075CrossRefGoogle Scholar
  45. 45.
    Pinho CMCT, De Carvalho JRFG (1986) Diffusion around oblate ellipsoids—a study on the influence of particle shape on the rate of particle consumption in fluid-particle processes. Int J Heat Mass Transf 29(10):1605–1607CrossRefGoogle Scholar
  46. 46.
    Bobbert PA, Wind MM, Vlieger J (1987) Diffusion to a slowly growing truncated sphere on a substrate. Physica A 141(1):58–72CrossRefGoogle Scholar
  47. 47.
    Branco PD, Mostany J, Borrás C, Scharifker BR (2009) The current transient for nucleation and diffusion-controlled growth of spherical caps. J Solid State Electrochem 13(4):565–571CrossRefGoogle Scholar
  48. 48.
    Branco PD, Saavedra K, Palomar-Pardavé M, Borrás C, Mostany J, Scharifker BR (2016) Nucleation kinetics and contact angles of silver clusters electrodeposited on indium tin oxide surfaces. J Electroanal Chem 765:140–148CrossRefGoogle Scholar
  49. 49.
    Guo L, Searson PC (2007) Simulations of island growth and island spatial distribution during electrodeposition. Electrochem Solid State Lett 10(7):D76–D78CrossRefGoogle Scholar
  50. 50.
    Fransaer JL, Penner RM (1999) Brownian dynamics simulation of the growth of metal nanocrystal ensembles on electrode surfaces from solution. I. Instantaneous nucleation and diffusion-controlled growth. J Phys Chem B 103(36):7643–7653CrossRefGoogle Scholar
  51. 51.
    Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2):238–242CrossRefPubMedGoogle Scholar
  52. 52.
    Grujicic D, Pesic B (2005) Reaction and nucleation mechanisms of copper electrodeposition from ammonical solutions on vitreous carbon. Electrochim Acta 50(22):4426–4443CrossRefGoogle Scholar
  53. 53.
    Tomellini M, Fanfoni M (1997) Kinetics of clustering on surfaces in: Monograph on Chemistry for the 21st Century:Interfacial Science, Roberts MW (ed), Blakwell Science, chapter 6Google Scholar
  54. 54.
    Palomar-Pardave´ M, Scharifker BR, Arce EM, Romero-Romo M (2005) Nucleation and diffusion-controlled growth of electroactive centers: reduction of protons during cobalt electrodeposition. Electrochim Acta 50(24):4736–4745CrossRefGoogle Scholar
  55. 55.
    Tomellini M (2018) Spatial distribution of nuclei in progressive nucleation: modeling and application. Physica A 496:481–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità degli studi di Roma Tor VergataRomeItaly
  2. 2.Istituto di Struttura della MateriaCNRRomeItaly

Personalised recommendations