Journal of Solid State Electrochemistry

, Volume 22, Issue 10, pp 3077–3084 | Cite as

Novel gold dendritic nanoflowers deposited on titanium nitride for photoelectrochemical cells

  • Ming-Hua Shiao
  • Chun-Ting Lin
  • Hung Ji Huang
  • Ping-Hsi Chen
  • Bo-Huei Liao
  • Fan-Gang Tseng
  • Yung-Sheng Lin
Original Paper


This study demonstrates the elaboration of a novel composite comprising gold dendritic nanoflowers (Au DNFs)/titanium nitride (TiN)/silicon (Si); this composite can be used for methanol oxidation reactions in alkaline electrolytes. Cyclic voltammograms showed that a thick (650 nm) Au DNFs/TiN/Si (L-DNFs-TiN) composite had double the oxidation current density of a thick (800 nm) Au DNFs/Si (L-DNFs-Si) composite in the presence of light illumination, whereas the oxidation current density for a thin (250 nm) Au DNFs/Si (S-DNFs-Si) composite and Au nanoparticles could not be determined. Chronoamperometry (CA) testing indicated that the L-DNFs-TiN could absorb light illumination more effectively than the L-DNFs-Si did. These results correspond to the broadband light absorption of TiN. Testing with continuous cyclic on/off light illumination showed a repeatable performance in CA, indicating that the proposed L-DNFs-TiN composite can be applied in photoelectrochemical cells in the future.


Gold Titanium nitride Methanol Oxidation 



The authors are grateful for the SEM analyses of Ms. Nancy Chu from the Instrument Technology Research Center, National Applied Research Laboratories.

Funding information

The authors are grateful for the financial support of the Ministry of Science and Technology, Taiwan (contract numbers: MOST 105-2221-E-492-003-MY2 and MOST 106-2221-E-239-022).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahmad H, Kamarudin SK, Minggu LJ, Hasran UA, Masdar S, Wan Daud WR (2017) Enhancing methanol oxidation with a TiO2-modified semiconductor as a photo-catalyst. Int J Hydrogen Energ 42(14):8986–8996CrossRefGoogle Scholar
  2. 2.
    Krejčíková S, Matějová L, Kočí K, Obalová L, Matěj Z, Čapek L, Šolcová O (2012) Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications. Appl Catal B-Environ 111-112:119–125CrossRefGoogle Scholar
  3. 3.
    Thomas J, Yoon M (2012) Facile synthesis of pure TiO2(B) nanofibers doped with gold nanoparticles and solar photocatalytic activities. Appl Catal B-Environ 111-112:502–508CrossRefGoogle Scholar
  4. 4.
    Sun B, Vorontsov AV, Smirniotis PG (2003) Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 19(8):3151–3156CrossRefGoogle Scholar
  5. 5.
    Fu P, Zhang P, Li J (2011) Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185nm irradiation. Appl Catal B-Environ 105(1-2):220–228CrossRefGoogle Scholar
  6. 6.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129(46):14156–14157CrossRefPubMedGoogle Scholar
  7. 7.
    Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252-253:233–242CrossRefPubMedGoogle Scholar
  8. 8.
    Lee S, Lee YW, Ahn H, Kim JH, Han SW (2017) Plasmon-enhanced electrocatalysis from synergistic hybrids of noble metal nanocrystals. Curr Opin Electrochem 4(1):11–17CrossRefGoogle Scholar
  9. 9.
    Bonyár A, Csarnovics I, Veres M, Himics L, Csik A, Kámán J, Balázs L, Kökényesi S (2018) Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications. Sens Actuat B-Chem 255:433–439CrossRefGoogle Scholar
  10. 10.
    Kusior A, Wnuk A, Trenczek-Zajac A, Zakrzewska K, Radecka M (2015) TiO2 nanostructures for photoelectrochemical cells (PECs). Int J Hydrogen Energ 40(14):4936–4944CrossRefGoogle Scholar
  11. 11.
    Lin CT, Chang MN, Huang HJ, Chen CH, Sun RJ, Liao BH, Chou Chau YF, Hsiao CN, Shiao MH, Tseng FG (2016) Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim Acta 192:15–21CrossRefGoogle Scholar
  12. 12.
    Naldoni A, Shalaev VM, Brongersma ML (2017) Applying plasmonics to a sustainable future. Science 356(6341):908–909CrossRefPubMedGoogle Scholar
  13. 13.
    Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro LV, Govorov AO, Kildishev AV, Boltasseva A, Shalaev VM (2017) Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv Optical Mater 5(15):1601031CrossRefGoogle Scholar
  14. 14.
    Venugopal N, Gerasimov VS, Ershov AE, Karpov SV, Polyutov SP (2017) Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt Mater 72:397–402CrossRefGoogle Scholar
  15. 15.
    Lee CP, Lin LY, Vittal R, Ho KC (2011) Favorable effects of titanium nitride or its thermally treated version in a gel electrolyte for a quasi-solid-state dye-sensitized solar cell. J Power Sources 196(3):1665–1670CrossRefGoogle Scholar
  16. 16.
    Xie Y, Wang Y, Du H (2013) Electrochemical capacitance performance of titanium nitride nanoarray. Mater Sci Eng B 178(20):1443–1451CrossRefGoogle Scholar
  17. 17.
    Musthafa OTM, Sampath S (2008) High performance platinized titanium nitride catalyst for methanoloxidation. Chem Commun 1:67–69CrossRefGoogle Scholar
  18. 18.
    Shiao MH, Lin CT, Zeng JJ, Lin YS (2018) Novel gold dendritic nanoforests combined with titanium nitride for visible-light-enhanced chemical degradation. Nanomaterials 8(5):282CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Assiongbon KA, Roy D (2005) Electro-oxidation of methanol on gold in alkaline media: adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf Sci 594(1-3):99–119CrossRefGoogle Scholar
  20. 20.
    Ye W, Shen C, Tian J, Wang C, Bao L, Gao H (2008) Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem Commun 10(4):625–629CrossRefGoogle Scholar
  21. 21.
    Carraro C, Maboudian R, Magagnin L (2007) Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surf Sci Rep 62(12):499–525CrossRefGoogle Scholar
  22. 22.
    Lahiri A, Wen R, Kuimalee S, Kobayashi S, Park H (2012) One-step growth of needle and dendritic gold nanostructures on silicon for surface enhanced Raman scattering. CrystEngComm 14(4):1241–1246CrossRefGoogle Scholar
  23. 23.
    Lahiri A, Wen R, Kuimalee S, Chowdhury A, Kobayashi S, Zhang L, Wang P, Fang Y (2013) Photo-assisted control of gold and silver nanostructures on silicon and its SERRS effect. J Phys D-Appl Phys 46(27):275303CrossRefGoogle Scholar
  24. 24.
    Jung JY, Guo Z, Jee SW, Um HD, Park KT, Lee JH (2010) A strong antireflective solar cell prepared by tapering silicon nanowires. Opt Mater Express 18(S3):A286–A292CrossRefGoogle Scholar
  25. 25.
    White N, Campbell AL, Grant JT, Pachter R, Eyink K, Jakubiak R, Martinez G, Ramana CV (2014) Surface/interface analysis and optical properties of RF sputter-deposited nanocrystalline titanium nitride thin films. Appl Surf Sci 292:74–85CrossRefGoogle Scholar
  26. 26.
    Zhao J, Lin J, Wei H, Li X, Zhang W, Zhao G, Bu J, Chen Y (2015) Surface enhanced Raman scattering substrates based on titanium nitride nanorods. Opt Mater 47:219–224CrossRefGoogle Scholar
  27. 27.
    Liao Q, Li L, Chen R, Zhu X, Wang H, Ye D, Cheng X, Zhang M, Zhou Y (2015) Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode. Int J Hydrogen Energ 40(46):16547–16555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instrument Technology Research CenterNational Applied Research LaboratoriesHsinchuTaiwan
  2. 2.Department of Chemical EngineeringNational United UniversityMiaoliTaiwan
  3. 3.Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of MattersNational Tsing Hua UniversityHsinchuTaiwan
  4. 4.Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations