Electricity production from lignocellulosic biomass by direct coupling of a gasifier and a nickel/yttria-stabilized zirconia-based solid oxide fuel cell: influence of the H2S content of the syngas onto performances and aging

  • F. Ricoul
  • A. Subrenat
  • O. Joubert
  • A. Le Gal La Salle
Original Paper

Abstract

The aim of this work is to study the reactivity of a Ni-YSZ-based solid oxide fuel cell (SOFC) fueled with gaseous mixtures having the same composition as the syngas issued from a fixed-bed downdraft and staged gasification pilot. The syngas issued from the gasifier contains some ppm(v) of H2S, and in order to adapt the purification process, the influence of this compound on the Ni-YSZ-based SOFCs is evaluated at 600 and 850 °C. The influence of H2S depends on fuel composition, temperature but also of current density. In H2–N2 mixtures and only at 600 °C, a significant decrease of cell performances is observed for H2S > 4.5 ppm(v). For H2–CO–CO2–N2 mixtures, the influence is more important since a small decrease of performance can be observed for 1 ppm(v) of H2S even at 850 °C. Nevertheless, at 600 °C, it is possible to avoid damage by limiting the current density. Aging experiments, realized at 750 °C, show that the influence of 1 and 2 ppm(v) of H2S is more important during the first 20 h and is reversible: at this temperature, after poisoning with 1 ppm(v) of H2S during 72 h, the cell recovers 91% of its initial power density after 100 h in pure hydrogen, and after subsequent poisoning with 2 ppm(v) of H2S during 77 h, the cell recovers 94% of its initial power density after 168 h in pure hydrogen.

Keywords

Fuel cell Sulfur-tolerant anodes Regeneration after poisoning Electrochemical impedance spectroscopy 

Notes

Acknowledgements

The authors are thankful to Eurostar’s funding for financial support through the European RoxSolidCell project E! 7576 and to ADEME (Agence de l’Environnement et de la Maîtrise de l’Energie) for financial support through the TITEC (Transfert pré-Industriel et Tests En Conditions réelles) project VALORPAC No. 1294C0086. M.R. is thankful to ANRT (Association Nationale de la Recherche et de la Technologie) for awarding his CIFRE (Convention Industrielle de Formation par la Recherche) thesis in the S3D Company.

References

  1. 1.
    Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrog Energy 35(10):4962–4969CrossRefGoogle Scholar
  2. 2.
    Lin J, Trabold TA, Walluk MR, Smith DF (2014) Bio-fuel reforming for solid oxide fuel cell applications. Part 2: biodiesel. Int J Hydrog Energy 39(1):183–195CrossRefGoogle Scholar
  3. 3.
    La Licata B, Sagnelli F, Boulanger A, Lanzini A, Leone P, Zitella P, Santarelli M (2011) Bio-hydrogen production from organic wastes in a pilot plant reactor and its use in a SOFC. Int J Hydrog Energy 36(13):7861–7865CrossRefGoogle Scholar
  4. 4.
    Bocci E, Sisinni M, Moneti M, Vecchione L, Di Carlo A, Villarini M (2014) State of art of small scale biomass gasification power systems: a review of the different typologies. Energy Procedia 45:247–256CrossRefGoogle Scholar
  5. 5.
    Sivagurunathan P, Kumar G, Mudhoo A, Rene ER, Saratale GD, Kobayashi T, Xu K, Kim S-H, Kim D-H (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sust Energ Rev 77:28–42CrossRefGoogle Scholar
  6. 6.
    Doyle TS, Dehouche Z, Aravind PV, Liu M, Stankovic S (2014) Investigating the impact and reaction pathway of toluene on a SOFC running on syngas. Int J Hydrog Energy 39(23):12083–12091CrossRefGoogle Scholar
  7. 7.
    Papurello D, Silvestri S, Tomasi L, Belcari I, Biasioli F, Santarellia M (2016) Biowaste for SOFCs. Energy Procedia 101:424–431CrossRefGoogle Scholar
  8. 8.
    Papurello D, Soukoulis C, Schuhfried E, Cappellin L, Flavia G, Silvestri S, Santarelli M, Biasioli F (2012) Monitoring of volatile compound emissions during dry anaerobic digestion of the organic fraction of municipal solid waste by proton transfer reaction time-of-flight mass spectrometry. Bioresour Technol 126:254–265CrossRefGoogle Scholar
  9. 9.
    Razbani O, Assadi M (2013) Performance of a biohydrogen solid oxide fuel cell. Int J Hydrog Energy 38(31):13781–13791CrossRefGoogle Scholar
  10. 10.
    Dudek M, Tomczyk P, Socha R, Skrzypkiewicz M, Jewulski J (2013) Biomass fuels for direct carbon fuel cell with solid oxide electrolyte. Int J Electrochem Sci 8:3229–3253Google Scholar
  11. 11.
    Colpan CO, Dincer I, Hamdullahpur F (2007) Thermodynamic modelling if direct internal reforming solid oxide fuel cells operating with syngas. Int J Hydrog Energy 32(7):787–795CrossRefGoogle Scholar
  12. 12.
    Hofmann P, Schweiger A, Fryda L, Panopoulos KD, Hohenwarter U, Bentzen JD, Ouweltjes JP, Ahrenfeldt J, Henriksen U, Kakaras E (2007) High temperature electrolyte supported Ni-GDC/YSZ/LSM SOFC operation on two stage Viking gasifier product gas. J Power Sources 173(1):357–366CrossRefGoogle Scholar
  13. 13.
    Saule M, Karl J (2008) Project co-ordinator name: Nadine Frank, "BioCellus-Biomass Fuel Cell Utility System," Technische Universität München, Project summaryGoogle Scholar
  14. 14.
    Aravind PV, de Jong W (2012) Evaluation of high temperature gas cleaning options for biomass gasification product gas for solid oxide fuel cell. Prog Energy Combust Sci 38(6):737–764CrossRefGoogle Scholar
  15. 15.
    Minutillo M, Perna A, Jannelli E, Cigolotti V, Nam SW, Yoon SP, Kwon BW (2017) Coupling of biomass gasification and SOFC–gas turbine hybrid system for small scale cogeneration applications. Energy Procedia 105:730–737CrossRefGoogle Scholar
  16. 16.
    Din ZU, Zainal ZA (2017) The fate of SOFC anodes under biomass producer gas contaminants. Renew Sust Energ Rev 72:1050–1066CrossRefGoogle Scholar
  17. 17.
    Lanzini A, Madi H, Chiodo V, Papurello, Maisano S, Santarelli M, Vanherle J (2017) Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Prog Energy Combust Sci 61:150–188CrossRefGoogle Scholar
  18. 18.
    Madi H, Lanzini A, Papurello D, Diethelm S, Ludwig C, Santarelli M, Van herle J (2016) Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments. Journal of Power Sources 326:349–356CrossRefGoogle Scholar
  19. 19.
    Papurello D, Lanzini A, Tognana L, Silvestri, Santarelli M (2015) Waste to energy: exploitation of biogas from organic waste in a 500Wel solid oxide fuel cell (SOFC) stack. Energy 85:145–158CrossRefGoogle Scholar
  20. 20.
    Papurello D, Iafrate C, Lanzini A, Santarelli M (2017) Trace compounds impact on SOFC performance: experimental and modelling approach. Appl Energy 208:637–654CrossRefGoogle Scholar
  21. 21.
    Papurello D, Lanzini A, Leone P, Santarelli M (2016) The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas. Renew Energy 99:747–753CrossRefGoogle Scholar
  22. 22.
    Ricoul F (2016) Association d’un procédé de gazéification avec une pile à combustible haute temperature (SOFC) pour la production d’électricité à partir de biomasse. Thesis. NantesGoogle Scholar
  23. 23.
    Ricoul F, Le Gal La Salle A, Kerihuel A, Subrenat A, Joubert O (2014) High temperature fuel cell fueled with syngas produced from biomass gasification for small scale CHP units. Proceedings of the European Biomass Conference and Exhibition, Hamburg. p 23–6Google Scholar
  24. 24.
    Lebreton M, Delanoue B, Baron E, Ricoul F, Kerihuel A, Subrenat A, Joubert O, Le Gal la Salle A (2015) Effects of carbon monoxide, carbon dioxide, and methane on nickel/yttria-stabilized zirconia-based solid oxide fuel cells performance for direct coupling with a gasifier. Int J Hydrog Energy 40(32):10231–10241CrossRefGoogle Scholar
  25. 25.
    Le Gal La Salle A, Ricoul F, Joubert O, Kerihuel A, Subrenat A (2017) Electrochemical study of a SOFC fuelled with various gaseous mixtures issued from biomass gasification. Fuel Cells 17(2):144–150CrossRefGoogle Scholar
  26. 26.
    Ricoul F, Subrenat A, Joubert O, Le Gal la Salle A (2017) Electricity production from lignocellulosic biomass by direct coupling of a gasifier and a nickel/yttria-stabilized zirconia-based solid oxide fuel cell. Part 1: from gas production to direct electricity production. Int J Hydrog Energy 412:21215–21225CrossRefGoogle Scholar
  27. 27.
    Dong J, Cheng Z, Zha S, Liu M (2006) Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. J Power Sources 156(2):461–465CrossRefGoogle Scholar
  28. 28.
    Li Y, Huang P, Tao D, Wu J, Qiu M, Huang X, Ding K, Chen W, Su W, Zhang Y (2016) Adsorption and dissociation of H2S on monometallic and monolayer bi metallic Ni/Pd(111) surfaces: a first-principles study. Appl Surf Sci 387:301–307CrossRefGoogle Scholar
  29. 29.
    Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153(11):A2023–A2029CrossRefGoogle Scholar
  30. 30.
    Chen H, Wang F, Wang W, Chen D, Li S-D, Shao Z (2016) H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Appl Energy 179:765–777CrossRefGoogle Scholar
  31. 31.
    Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168(2):289–298CrossRefGoogle Scholar
  32. 32.
    Trembly JP, Marquez AI, Ohrn TR, Bayless D (2006) J. Effects of coal syngas and H2S on the performance of solid oxide fuel cells: single-cell tests. J Power Sources 158(1):263–273CrossRefGoogle Scholar
  33. 33.
    Hagen A, Johnson GB, Hjalmarsson P (2014) Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: effect of current density and sulfur concentration. J Power Sources 272:776–785CrossRefGoogle Scholar
  34. 34.
    Papurello D, Lanzini A, Fiorilli S, Smeacetto F, Singh R, Santarelli M (2016) Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): deactivation in single cells and a stack. Chem Eng J 283:1224–1233CrossRefGoogle Scholar
  35. 35.
    Chein RY, Chen YC, Yu CT, Chung JN (2015) Modeling and simulation of H2S effect in high-temperature water-gas shift reaction using coal-derived syngas. Int J Hydrog Energy 40(25):8051–8061CrossRefGoogle Scholar
  36. 36.
    Lima da Silva A, Heck NC (2015) Thermodynamics of sulfur poisoning in solid oxide fuel cells revisited: the effect of H2S concentration, temperature, current density and fuel utilization. J Power Sources 296:92–101CrossRefGoogle Scholar
  37. 37.
    Thi HHM, Saubat B, Sergent N, Pagnier T (2015) In situ Raman and optical characterization of H2S reaction with Ni-based anodes for SOFCs. Solid State Ionics 272:84–90CrossRefGoogle Scholar
  38. 38.
    Sigot L, Fontseré Obis M, Benbelkacem H, Germain P, Ducom G (2016) Int J Hydrog Energy 41(41):18533–18541CrossRefGoogle Scholar
  39. 39.
    Zha S, Cheng Z, Liu M (2007) Sulfur poisoning and regeneration on Ni-based anodes in solid oxide fuel cells. J Electrochem Soc 154(2):B201–B206CrossRefGoogle Scholar
  40. 40.
    Kuramoto K, Hosokai S, Matsuoka K, Ishiyama T, Kishimoto H, Yamaji K (2017) Degradation behaviors of SOFC due to chemical interaction between Ni-YSZ anode and trace gaseous impurities in coal syngas. Fuel Process Technol 160:8–18CrossRefGoogle Scholar
  41. 41.
    Shiratori Y, Sakamoto M (2016) Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology. J Power Sources 332:170–179CrossRefGoogle Scholar
  42. 42.
    Xu Z-R, Luo J-L, Chuang KT (2009) The study of Au/MoS2 anode catalyst for solid oxide fuel cell (SOFC) using H2S-containing syngas fuel. J Power Sources 188(2):458–462CrossRefGoogle Scholar
  43. 43.
    Papurello D, Lanzini A (2018) SOFC single cells fed by biogas: experimental tests with trace contaminants. Waste Manag 72:306–312CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Xu X, Yang Z (2018) J Alloys Compd in press.  https://doi.org/10.1016/j.jallcom.2017.12.319
  45. 45.
    Abdalla AM, Hossain S, Azad AT, Petra Pg MI, Begum F, Eriksson SG, Azad AK (2018) Renew Sust Energ Rev 82:353–368CrossRefGoogle Scholar
  46. 46.
    Sun S, Awadallah O, Cheng Z (2018) Poisoning of Ni-based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants. J Power Sources 378:255–263CrossRefGoogle Scholar
  47. 47.
    Papurello D, Lanzini A, Drago D, Leone P, Santarelli M (2016) Limiting factors for planar solid oxide fuel cells under different trace compound concentrations. Energy:9567–9578Google Scholar
  48. 48.
    Papurello D, Lanzini A, Leone P, Santarelli M, Silvestri S (2014) Biogas from the organic fraction of municipal solid waste: dealing with contaminants for a solid oxide fuel cell energy generator. Waste Manag 34(11):2047–2056CrossRefGoogle Scholar
  49. 49.
    Riegraf M, Zekri A, Knipper M, Costa R, Schiller G, Friedrich KA (2018) Sulfur poisoning of Ni/gadolinium-doped ceria anodes: a long-term study outlining stable solid oxide fuel cell operation. J Power Sources 380:26–36CrossRefGoogle Scholar
  50. 50.
    Ceborello JA, Lahoz R, Laguna-Bercero MA, Pena JI, Larrea A, Orera VM (2017) Characterization of laser-processed thin ceramic membranes for electrolyte-supported solid oxide fuel cells. Int J Hydrog Energy 42:13939–13948CrossRefGoogle Scholar
  51. 51.
    Ihringer R (2011) 2R-cell: a universal cell for an easy and safe SOFC operation. Electrochem Soc Trans 35:393–402Google Scholar
  52. 52.
    Fiaxell SOFC Technologies | Home, https://www.fiaxell.com . 30 Accessed March 2018
  53. 53.
    Gao S, Li J, Lin Z (2014) Theoretical model for surface diffusion driven Ni-particle agglomeration in anode of solid oxide fuel cell. J Power Sources 255:144–150CrossRefGoogle Scholar
  54. 54.
    Haydn M, Ortner K, Franco T, Uhlenbruck S, Menzler NH, Stöver D, Braüer G, Venskutonis A, Sigi LS, Buchkremer HP, Vassen R (2014) Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells. J Power Sources 256:52–60CrossRefGoogle Scholar
  55. 55.
    Zhang L, Liu F, Brinkman K, Reifsnider KL, Virkar AV (2014) A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J Power Sources 247:947–960CrossRefGoogle Scholar
  56. 56.
    Coquoz P, Ruiz J, El Bakkali I, Grize C, Bourradou A, Diethelm S, Singh V, Ihringer R Study of performance under thermic and redox cycles of 2R-cell equipped with LSC based cathode. 6th International Conference on Fundamentals and Development of Fuel Cells, 3–5 February, 2015, Toulouse, France, Oral presentation OPR3-43Google Scholar
  57. 57.
    Huang QA, Hui R, Wang B, Zhang J (2007) A review of AC impedance modelling and validation in SOFC diagnosis. Electrochim Acta 52(28):8144–8164CrossRefGoogle Scholar
  58. 58.
    Klotz D, Weber A, Ivers-Tiffee E (2017) Practical guidelines for reliable electrochemical characterization of solid oxide fuel cells. Electrochim Acta 227:110–126CrossRefGoogle Scholar
  59. 59.
    Johnson D (2002) ZView: a software program for IES analysis, version 2.8. Scribner associates, INC, Southern PinesGoogle Scholar
  60. 60.
    Hornes A, Escudero MJ, Martinez-Arias DLA (2014) Electrochemical performance of a solid oxide fuel cell with an anode based on Cu-Ni/CeO2 for methane direct oxidation. J Power Sources 249:520–526CrossRefGoogle Scholar
  61. 61.
    Qian J, Sun W, Zhang Q, Jiang G, Liu W (2014) Fabrication and performance of BaCe0.8Y0.2O3−δ-BaZr0.8Y0.22O3−δ bilayer electrolyte for anode-supported solid oxide fuel cells. J Power Sources 249:131–136CrossRefGoogle Scholar
  62. 62.
    Huang S, Feng S, Lu Q, Li Y, Wang H, Wang C (2014) Cerium and niobium doped SrCoO3−δ as a potential cathode fir intermediate temperature solid oxide fuel cells. J Power Sources 251:357–362CrossRefGoogle Scholar
  63. 63.
    Dai Y, Lou Z, Wang Z, Qiao J, Sun W, Sun K (2015) Electrochemical and chemical stability performance improvement of Ba0.5Co0.7Sr0.5Fe0.91Al0.09O3−δ cathode for IT-SOFC through the introduction of a GDC interlayer. Int J Hydrog Energy 40(17):5939–5946CrossRefGoogle Scholar
  64. 64.
    Nicollet C, Flura A, Vibhu V, Rougier A, Bassat JM, Grenier JC (2016) Int J Hydrog Energy 41(34):15538–15544CrossRefGoogle Scholar
  65. 65.
    Nielsen J, Hjelm J (2014) Impedance of SOFC electrodes: a review and a comprehensive case study on the impedance of LSM:YSZ cathodes. Electrochim Acta 115:31–45CrossRefGoogle Scholar
  66. 66.
    Marrero-Lopez D, Pena-Martinez J, Ruiz-Morales JC, Gabas M, Nunez P, Aranda MAG, Ramos-Barrado JR (2010) Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid St Ionics 180(40):1672–1682CrossRefGoogle Scholar
  67. 67.
    Ju H, Eom J, Lee JK, Choi H, Lim TH, Song RH, Lee J (2014) Durable power performance of a direct ash-free coal fuel cell. Electrochim Acta 115:511–517CrossRefGoogle Scholar
  68. 68.
    Cole KS, Cole RH (1941) Dispersion and adsorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351CrossRefGoogle Scholar
  69. 69.
    MacDonald JR (1987) Impedance spectroscopy emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  70. 70.
    Bonanos N (2008) The application of impedance spectroscopy to solid oxide fuel cells and their components, EIS-2008, 41st Heyrovsky discussion, Caste Trest, Czech RepublicGoogle Scholar
  71. 71.
    Sun LP, Zhao H, Li Q, Huo LH, Viricelle JP, Pijolat C (2013) Study of oxygen reduction mechanism on Ag modified Sm1.8Ce0.2CuO4 cathode for solid oxide fuel cell. Int J Hydrog Energy 38(32):14060–14066CrossRefGoogle Scholar
  72. 72.
    Marrero-Lopez D, Romero R, Martin F, Ramos-Barrado JR (2014) Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3−δ cathode prepared by conventional spray-pyrolysis. J Power Sources 255:308–317CrossRefGoogle Scholar
  73. 73.
    Harrington DA (2015) The rate-determining step in electrochemical impedance spectroscopy. J Electroanal Chem 737:30–36CrossRefGoogle Scholar
  74. 74.
    Montinaro D, Contino AR, Dellai A, Rolland M (2014) Determination of the impedance contributions in anode supported solid oxide fuels with (La, Sr)(Co,Fe)O3−δ cathode. Int J Hydrog Energy 39(36):21638–21646CrossRefGoogle Scholar
  75. 75.
    Leonide A, Sonn V, Weber A, Ivers-Tiffee E (2008) Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cell. J Electrochem Soc 155(1):B36–B41CrossRefGoogle Scholar
  76. 76.
    Kim EH, Jung HJ, An KS, Park JY, Lee J, Hwang ID, Kim JY, Lee MJ, Kwon Y, Hwang JH (2014) Degradation of La0.6Sr0.4CoO based-cathode performance in solid oxide fuel cells due to the presence of aluminium oxide deposited through atomic layer deposition. Ceram Int 40(6):7817–7822CrossRefGoogle Scholar
  77. 77.
    Primdahl S, Mogensen M (1999) Gas diffusion impedance in characterization of solid oxide fuel cell anodes. J Electrochem Soc 146(8):2827–2833CrossRefGoogle Scholar
  78. 78.
    Philippeau B, Mauvy F, Mazataud C, Fourcade S, Grenier JC (2013) Comparative study of electrochemical properties of mixed conducting Ln2Ni4O4+δ (Ln = La, Pr and Nd) and La0.6Sr0.4Fe0.8Co0.2O3−δ as SOFC cathodes associated to Ce0.9Gd0.1O2−δ, La0.8Sr0.2Ga0.8Mg0.2O3−δ and La9Sr1Si6O26.5 electrolytes. Solid St Ionics 249-250:17–25CrossRefGoogle Scholar
  79. 79.
    Kim SJ, Choi M-B, Park M, Kim H, Son J-W, Lee J-H, Kim B-B, Lee H-W, Kim S-G, Yoon KJ (2017) Acceleration tests: degradation of anode-supported planar solid oxide fuel cells at elevated operating temperatures. J Power Sources 360:284–293CrossRefGoogle Scholar
  80. 80.
    Papurello D, Menichini D, Lanzini A (2017) Distributed relaxation times technique for the determination of fuel cell losses with an equivalent circuit model to identify physicochemical processes. Electrochim Acta 258:98:109CrossRefGoogle Scholar
  81. 81.
    Le Gal La Salle A, Doury Y, Ihringer R, Joubert O (2015) Etude par spectroscopie d’impédance électrochimique du vieillissement de cellules SOFC. Réunion plénière du GdR 3652 HySPàC “Hydrogène, Systèmes et Piles à combustible”, PACEOS 3, PorticcioGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Matériaux Jean Rouxel (IMN)CNRS—Université de NantesNantes Cedex 3France
  2. 2.S3D-Solutions Déchets et Développement DurableNantes Cedex 3France
  3. 3.GEPEA, UMR CNRS 6144-IMT Atlantique-Campus de NantesNantes Cedex 3France

Personalised recommendations