Journal of Solid State Electrochemistry

, Volume 22, Issue 8, pp 2413–2423 | Cite as

Preparation of electrospun heterostructured hollow SnO2/CuO nanofibers and their enhanced visible light photocatalytic performance

  • Kai Wang
  • Weizhou Zhang
  • Feipeng Lou
  • Ting Wei
  • Ziming Qian
  • Weihong Guo
Original Paper


Heterostructured SnO2/CuO nanofibers with a hollow morphology were successfully fabricated by a one-step electrospinning method. The electrospun nanofibers were transformed into hollow nanostructures in the presence of camphene after a calcination process, and the obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectra (PL), and photodegradation measurements. The scanning electron microscopy (SEM) images displayed a rough and hollow structure for the obtained nanofibers. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) identified the molecular composition and chemical interactions of the nanofibers. Photoluminescent (PL) measurements indicated that a recombination of the photoinduced electrons and holes was further inhibited due to the hollow nanostructure. Furthermore, the photodegradation of methylene blue suggested that the heterostructured SnO2/CuO hollow nanofibers possessed higher charge separation and photodegradation abilities than those of the other samples under visible light irradiation. This work can be potentially applied to the fabrication of other inorganic oxide photocatalysts with enhanced photodegradation activity in the field of environmental remediation.


Electrospinning Heterostructure Hollow nanostructure Photocatalysis 



The authors sincerely acknowledge “Scientific and Technological Achievements Transformation Program of Jiangsu Province (SBA2014010034)” and “Ningbo Industrial Major Projects (201601ZD-A01026).”


  1. 1.
    Kato H, Kudo A, Kobayashi H, Tsuji I (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (Agln)xZn2(1-x)S2. J Am Chem Soc 126:13406–13413CrossRefGoogle Scholar
  2. 2.
    Hojamberdiev M, Zhu GQ, Sujaridworakun P, Jinawath S, Liu P, Zhou JP (2012) Visible-light-driven N-F-codoped TiO2 powders derived from different ammonium oxofluorotitanate precursors. Powder Technol 218:140–148CrossRefGoogle Scholar
  3. 3.
    Zhang J, Bang JH, Tang C, Kamat PV (2010) Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4(1):387–395CrossRefGoogle Scholar
  4. 4.
    Ebbinghaus SG, Abicht HP, Dronskowski R, Müller T, Reller A, Weidenkaff A (2009) Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog Solid State Chem 37(2-3):173–205CrossRefGoogle Scholar
  5. 5.
    Zhu C, Wang P, Wang L, Han L, Dong S (2011) Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nano 3:4376–4382Google Scholar
  6. 6.
    Dong B, Hu WH, Zhang XY, Wang J, Lu SS, Li X, Shang X, Liu YR, Han GQ, Chai YM, Liu CG (2017) Facile synthesis of hollow SnO2 nanospheres uniformly coated by Ag for electro-oxidation of hydrazine. Mater Lett 189:9–12CrossRefGoogle Scholar
  7. 7.
    Enesca A, Isac L, Andronic L, Perniu D, Duta A (2014) Tuning SnO2-TiO2 tandem systems for dyes mineralization. Appl Catal B Environ 147:175–184CrossRefGoogle Scholar
  8. 8.
    Peng XS, Meng GW, Zhang J, Wang XF, Zhao LX, Wang YW, Zhang LD (2002) Electrochemical fabrication of ordered Ag2S nanowire arrays. Mater Res Bull 37(7):1369–1375CrossRefGoogle Scholar
  9. 9.
    Hoffmann MR, Choi WY, Bahnemann DW (1994) A. General background. B. Semiconductor photocatalysis II. Mechanisms of semiconductor photocatalysis a. Basic features and characteristic times. Chem Rev 95:69–96CrossRefGoogle Scholar
  10. 10.
    Gan HH, Zhang GK, Guo YD (2012) Facile in situ synthesis of the bismuth oxychloride/bismuth niobate/TiO2 composite as a high efficient and stable visible light driven photocatalyst. J Colloid Interface Sci 386(1):373–380CrossRefGoogle Scholar
  11. 11.
    Kadir RA, Li Z, Sadek AZ, Rani RA, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Kalantar-zadeh K (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118(6):3129–3139CrossRefGoogle Scholar
  12. 12.
    Zhang YC, Yao L, Zhang G, Dionysiou DD, Li J, Du X (2014) One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl Catal B Environ 144:730–738CrossRefGoogle Scholar
  13. 13.
    Wang H, Kalytchuk S, Yang H, He L, Hu C, Teoh WY, Rogach AL (2014) Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(II) self-doping and their effects on optical and photoelectrochemical properties. Nano 6:6084–6091Google Scholar
  14. 14.
    Gu Q, Long J, Zhuang H, Zhang C, Zhou Y, Wang X (2014) Ternary Pt/SnO(x)/TiO2 photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts. Phys Chem Chem Phys 16(24):12521–12534CrossRefGoogle Scholar
  15. 15.
    Lu G, Linsebigler A, Yates JT (1995) Photooxidation of CH3Cl on TiO2 (110): a mechanism not involving H2O. J Phys Chem 99(19):7626–7631CrossRefGoogle Scholar
  16. 16.
    Zoolfakar AS, Rani RA, Morfa AJ, O’Mullane AP, Kalantar-zadeh K (2014) Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J Mater Chem C 2(27):5247–5270CrossRefGoogle Scholar
  17. 17.
    Mageshwari K, Sathyamoorthy R, Parka J (2015) Photocatalytic activity of hierarchical CuO microspheres synthesized by facile reflux condensation method. Powder Technol 278:150–156CrossRefGoogle Scholar
  18. 18.
    Qamar MT, Aslam M, Ismail IM, Salah N, Hameed A (2015) Synthesis, characterization, and sunlight mediated photocatalytic activity of CuO coated ZnO for the removal of nitrophenols. ACS Appl Mater Interfaces 7(16):8757–8769CrossRefGoogle Scholar
  19. 19.
    Praveen KD, Shankar MV, Kumari MM, Sadanandam G, Srinivas B, Durgakumari V (2013) Nano-size effects on CuO/TiO2 catalysts for highly efficient H2 production under solar light irradiation. Chem Commun 49(82):9443–9445CrossRefGoogle Scholar
  20. 20.
    Irie H, Kamiya K, Shibanuma T, Miura S, Tryk DA, Yokoyama T, Hashimoto K (2009) Visible light-sensitive Cu(II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses. J Phys Chem C 113(24):10761–10766CrossRefGoogle Scholar
  21. 21.
    Malwal D, Gopinath P (2016) Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo red dye under solar radiation. Cat Sci Technol 6(12):4458–4472CrossRefGoogle Scholar
  22. 22.
    Mourão HAJL, Junior WA, Ribeiro C (2012) Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B. Mater Chem Phys 135(2-3):524–532CrossRefGoogle Scholar
  23. 23.
    Marzec A, Radecka M, Maziarz W, Kusior A, Pędzich Z (2016) Structural, optical and electrical properties of nanocrystalline TiO2, SnO2 and their composites obtained by the sol-gel method. J Eur Ceram Soc 36(12):2981–2989CrossRefGoogle Scholar
  24. 24.
    Marschall R (2014) Photocatalysis: semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24(17):2421–2440CrossRefGoogle Scholar
  25. 25.
    Vadivel S, Rajarajan G (2015) Influence of Cu doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci Mater Electron 26(8):5863–5870CrossRefGoogle Scholar
  26. 26.
    Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425CrossRefGoogle Scholar
  27. 27.
    Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45(5):1225–1241CrossRefGoogle Scholar
  28. 28.
    Malwal D, Gopinath P (2015) Fabrication and characterization of poly(ethylene oxide) templated nickel oxide nanofibers for dye degradation. Environ Sci Nano 2(1):78–85CrossRefGoogle Scholar
  29. 29.
    Yoon BH, Park CS, Kim HE, Koh YH (2007) In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires. J Am Ceram Soc 90:3759–3766Google Scholar
  30. 30.
    Hwang SJ, Choi KI, Yoon JW, Kang YC, Lee JH (2015) Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene. Chemistry 21(15):5872–5878CrossRefGoogle Scholar
  31. 31.
    Unni GE, Deepak TG, Nair AS (2016) Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells. Mat Sci Semicond Process 41:370–377CrossRefGoogle Scholar
  32. 32.
    Sahay R, Sundaramurthy J, Kumar SP, Thavasi V, Mhaisalkar SG, Ramakrishna S (2012) Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J Solid State Chem 186:261–267CrossRefGoogle Scholar
  33. 33.
    Luo Y, Wang K, Chen Q, Xu Y, Xue H, Qian Q (2015) Preparation and characterization of electrospun la(1-x)Ce(x)CoO(δ): application to catalytic oxidation of benzene. J Hazard Mater 296:17–22CrossRefGoogle Scholar
  34. 34.
    Samadi M, Pourjavadi A, Moshfegh AZ (2014) Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light. Appl Surf Sci 298:147–154CrossRefGoogle Scholar
  35. 35.
    Jiang Z, Zhao R, Sun B, Nie G, Ji H, Lei J, Wang C (2016) Highly sensitive acetone sensor based on Eu-doped SnO2 electrospun nanofibers. Ceram Int 42(14):15881–15888CrossRefGoogle Scholar
  36. 36.
    Panzner G, Egert B, Schmidt HP (1985) The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES. Surf Sci 151(2-3):400–408CrossRefGoogle Scholar
  37. 37.
    Senthilkumar V, Kim Y, Chandrasekaran S, Rajagopalan B, Kim E, Chung J (2015) Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv 5(26):20545–20553CrossRefGoogle Scholar
  38. 38.
    Nagasawa Y, Choso T, Karasuda T, Shimomura S, Ouyang F, Tabata K, Yamaguchi Y (1999) Photoemission study of the interaction of a reduced thin film SnO2 with oxygen. Surf Sci 433:226–229CrossRefGoogle Scholar
  39. 39.
    Popescu DA, Herrmann JM, Ensuque A, BozonVerduraz F (2001) Nanosized tin dioxide: spectroscopic (UV-VIS, NIR, EPR) and electrical conductivity studies. Phys Chem Chem Phys 3(12):2522–2530CrossRefGoogle Scholar
  40. 40.
    López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7CrossRefGoogle Scholar
  41. 41.
    Jing L, Fu H, Wang B, Wang D, Xin B, Li S, Sun JS (2006) Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles. Appl Catal B Environ 62:282–291CrossRefGoogle Scholar
  42. 42.
    Su C, Shao C, Liu Y (2011) Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J Colloid Interface Sci 359(1):220–227CrossRefGoogle Scholar
  43. 43.
    Knorr FJ, Mercado CC, Mchale JL (2008) Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J Phys Chem C 112(33):12786–12794CrossRefGoogle Scholar
  44. 44.
    Ng J, Xu S, Zhang X, Yang HY, Sun DD (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20(24):4287–4294CrossRefGoogle Scholar
  45. 45.
    Wang C, Shao C, Zhang X, Liu Y (2009) SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. Inorg Chem 48(15):7261–7268CrossRefGoogle Scholar
  46. 46.
    Liu Z, Sun DD, Guo P, Leckie JO (2007) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7(4):1081–1085CrossRefGoogle Scholar
  47. 47.
    Xu L, Steinmiller EMP, Skrabalak SE (2014) Achieving synergy with a potential photocatalytic Z-scheme: synthesis and evaluation of nitrogen-doped TiO2/SnO2 composites. J Phys Chem C 116:871–877CrossRefGoogle Scholar
  48. 48.
    Xu SH, Fei GT, Ouyang HM, Shang GL, Gao XD, Zhang L (2017) Necklace-like NiO-CuO heterogeneous composite hollow nanostructure: preparation, formation mechanism and structure control. Sci Rep 7(1):144–157CrossRefGoogle Scholar
  49. 49.
    Chen H, Leng W, Xu Y (2014) Enhanced visible-light photoactivity of CuWO4 through a surface-deposited CuO. J Phys Chem C 118(19):9982–9989CrossRefGoogle Scholar
  50. 50.
    Arai T, Yanagida M, Konishi Y, Iwasaki Y, Sugihara H, Sayama K (2008) Promotion effect of CuO co-catalyst on WO3-catalyzed photodegradation of organic substances. Catal Commun 9(6):1254–1258CrossRefGoogle Scholar
  51. 51.
    Shan W, Hu Y, Zheng M, Wei C (2015) The enhanced photocatalytic activity and self-cleaning properties of mesoporous SiO2 coated Cu-Bi2O3 thin films. Dalton Trans 44(16):7428–7436CrossRefGoogle Scholar
  52. 52.
    Zheng Z, Zhuge F, Wang Y, Zhang J, Gan L, Zhou X, Li H, Zhai T (2017) Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Adv Funct Mater.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Jiangsu Hengtong Power Cable Co., Ltd.SuzhouPeople’s Republic of China

Personalised recommendations