Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1607–1619 | Cite as

Acrylonitrile-butadiene-styrene (ABS) composite electrode for the simultaneous determination of vitamins B2 and B6 in pharmaceutical samples

  • Grasielli C. de Oliveira
  • Lucas C. Pereira
  • Ana L. Silva
  • Felipe S. Semaan
  • Marilza Castilho
  • Eduardo A. Ponzio
Original Paper


A lab-made affordable composite electrode based on acrylonitrile-butadiene-styrene (ABS) and graphite was developed and applied for the simultaneous determination of vitamins B2 (riboflavin, VB2) and B6 (pyridoxine, VB6) in pharmaceutical samples. Different ABS-graphite composite electrodes (AGCE) were prepared in proportions ranging from 40 to 80% (graphite, m/m) and characterized by a many complimentary techniques such as thermogravimetry (TG), Raman spectroscopy, Fourier transform-infrared (FTIR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Differential pulse voltammetry (DPV) was employed for analytical purposes, being several parameters investigated to determine the optimum experimental conditions. Best performance was obtained using as electrolyte 0.1 mol L−1 acetate buffer solution (pH 4.0), with a pulse amplitude of 100 mV, a scan increment of 5 mV, a modulation of time of 0.05 s, and a time interval of 0.5 s, resulting in a scanning rate of 10 mV s−1. The use of a 70% AGCE electrode under optimized conditions provided as linear responses for VB2 and VB6 intervals from 0.25 to 1.2 μmol L−1 (r = 0.997), and from 25 to 454 μmol L−1 (r = 0.989), respectively, with limits of detection of 0.15 μmol L−1 for VB2 and 10 μmol L−1 for VB6. The AGCE presented satisfactory results for the simultaneous determination of VB2 and VB6 in commercially available tablets, with recoveries between 99.5 and 98.0%, being those statistically compatible to those found by a reference spectrophotometric procedure.


Composite electrode Graphite ABS Pyridoxine Riboflavin 



The authors are indebted to the Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro–FAPERJ, E–26/102.971/2012 and E–26/111.407/2013) and to the Commission for the Improvement of Higher Education Personnel (Comissão de Aperfeiçoamento de Pessoal do Nível Superior-CAPES) for the research support; to Prof. Marcelo Camargo Severo de Macedo (UFES); to the Laboratory for NMR and Petrophysics Applications (UFF–LAR) for the use of the SEM; to the Reactors, Kinetics and Catalysis research laboratory (Laborátorio de Reatores, Cinética e Catálise–RECAT) for the use of the TG; to the Group of Electrochemistry and New Materials (Grupo de Eletroquímica e Novos Materiais–GENMAT) located at the Federal Mato Grosso University (Universidade Federal de Mato Grosso–UFMT) for the use of the potentiostat and to the Solid State Experimental Physics research laboratory (LEFES) for the use of the Raman spectrometer, both located at the Federal Fluminense University (Universidade Federal Fluminense–UFF).

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10008_2018_3897_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1545 kb).


  1. 1.
    Drummond JC (1920) The nomenclature of the so-called accessory food factors (vitamins). Biochem J 14(5):660. CrossRefGoogle Scholar
  2. 2.
    de Souza ACS, Ferreira CV, Jucá MB, Aoyama H, Cavagis ADM, Peppelenbosch MP (2005) Riboflavina: uma vitamina multifuncional. Química Nova 28(5):887–891. CrossRefGoogle Scholar
  3. 3.
    Brunetti B (2016) Recent advances in electroanalysis of vitamins. Electroanalysis 28(9):1930–1942. CrossRefGoogle Scholar
  4. 4.
    Wirkus D, Jakubus A, Owczuk R, Stepnowski P, Paszkiewicz M (2017) Development and application of novelty pretreatment method for the concurrent quantitation of eleven water-soluble B vitamins in ultrafiltrates after renal replacement therapy. J Chromatogr B 1043:228–234CrossRefGoogle Scholar
  5. 5.
    Moreno P, Salvadó V (2000) Determination of eight water-and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. J Chromatogr A 870(1–2):207–215. CrossRefGoogle Scholar
  6. 6.
    Mohamed A-MI, Mohamed HA, Abdel-Latif NM, Mohamed MR (2011) Spectrofluorimetric determination of some water-soluble vitamins. J AOAC Int 94(6):1758–1769. CrossRefGoogle Scholar
  7. 7.
    Llorent-Martínez EJ, Ortega-Barrales P, Molina-Díaz A (2008) Sequential injection multi-optosensor based on a dual-luminescence system using two sensing zones: application to multivitamin determination. Microchim Acta 162(1):199–204CrossRefGoogle Scholar
  8. 8.
    da Silva DC, Visentainer JV, de Souza NE, Oliveira CC (2013) Micellar electrokinetic chromatography method for determination of the ten water-soluble vitamins in food supplements. Food Anal Methods 6(6):1592–1606. CrossRefGoogle Scholar
  9. 9.
    Soderhjelm P, Lindquist J (1975) Voltammetric determination of pyridoxine by use of a carbon paste electrode. Analyst 100(1190):349–354. CrossRefGoogle Scholar
  10. 10.
    Teixeira MFS, Marino G, Dockal ER, Cavalheiro ÉTG (2004) Voltammetric determination of pyridoxine (vitamin B6) at a carbon paste electrode modified with vanadyl(IV)—Salen complex. Anal Chim Acta 508(1):79–85. CrossRefGoogle Scholar
  11. 11.
    Desai PB, Kotkar RM, Srivastava AK (2008) Electrochemical behaviour of pyridoxine hydrochloride (vitamin B6) at carbon paste electrode modified with crown ethers. J Solid State Electrochem 12(9):1067–1075. CrossRefGoogle Scholar
  12. 12.
    Fonseca CA, Vaz GCS, Azevedo JPA, Semaan FS (2011) Exploiting ion-pair formation for the enhancement of electroanalytical determination of pyridoxine (B6) onto polyurethane-graphite electrodes. Microchem J 99(2):186–192. CrossRefGoogle Scholar
  13. 13.
    Liu S-Q, Sun W-H, Li L-C, Li H, Wang X-L (2012) Electrocatalytic oxidation and voltammetric determination of vitamin B6 by a ssDNA-modified electrode. Int J Electrochem Sci 7:324–337CrossRefGoogle Scholar
  14. 14.
    Patra S, Roy E, Das R, Karfa P, Kumar S, Madhuri R, Sharma PK (2015) Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5′-phosphate imprinted polymer modified high throughput electrochemical sensor. Biosens Bioelectron 73:234–244CrossRefGoogle Scholar
  15. 15.
    Motaghedifard M, Behpour M, Ghoreishi SM, Honarmand E (2016) Electro-deposition of gold nanostructures on carbon paste electrode: a platform with signal amplification for voltammetric study and determination of pyridoxine (vitamin B6). Russ J Electrochem 52(5):477–487. CrossRefGoogle Scholar
  16. 16.
    Kassem MA, Hazazi OA, Ohsaka T, Awad MI (2016) Electroanalysis of pyridoxine at copper nanoparticles modified polycrystalline gold electrode. Electroanalysis 28(3):539–545. CrossRefGoogle Scholar
  17. 17.
    Kuzmanović D, Khan M, Mehmeti E, Nazir R, Amaizah NRR, Stanković DM (2016) Determination of pyridoxine (vitamin B6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diam Relat Mater 64:184–189. CrossRefGoogle Scholar
  18. 18.
    Kubota LT, Gorton L (1999) Electrochemical investigations of the reaction mechanism and kinetics between NADH and riboflavin immobilised on amorphous zirconium phosphate. J Solid State Electrochem 3(7-8):370–379. CrossRefGoogle Scholar
  19. 19.
    Bai J, Ndamanisha JC, Liu L, Yang L, Guo L (2010) Voltammetric detection of riboflavin based on ordered mesoporous carbon modified electrode. J Solid State Electrochem 14(12):2251–2256. CrossRefGoogle Scholar
  20. 20.
    Lavanya N, Radhakrishnan S, Sekar C, Navaneethan M, Hayakawa Y (2013) Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst 138(7):2061–2067CrossRefGoogle Scholar
  21. 21.
    Nezamzadeh-Ejhieh A, Pouladsaz P (2014) Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes. J Ind Eng Chem 20(4):2146–2152. CrossRefGoogle Scholar
  22. 22.
    Sá ES, da Silva PS, Jost CL, Spinelli A (2015) Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin). Sensors Actuators B Chem 209:423–430. CrossRefGoogle Scholar
  23. 23.
    Gupta R, Rastogi PK, Srivastava U, Ganesan V, Sonkar PK, Yadav DK (2016) Methylene blue incorporated mesoporous silica microsphere based sensing scaffold for the selective voltammetric determination of riboflavin. RSC Adv 6(70):65779–65788. CrossRefGoogle Scholar
  24. 24.
    Gu HY, Yu AM, Chen HY (2001) Electrochemical behavior and simultaneous determination of vitamin B2, B6, and C at electrochemically pretreated glassy carbon electrode. Anal Lett 34(13):2361–2374. CrossRefGoogle Scholar
  25. 25.
    Shaidarova LG, Davletshina LN, Budnikov GK (2006) Flow-injection determination of water-soluble vitamins B1, B2, and B6 from the electrocatalytic response of a graphite electrode modified with a ruthenium (III) hexacyanoruthenate (II) film. J Anal Chem 61(5):502–509. CrossRefGoogle Scholar
  26. 26.
    Nie T, Xu J-K, Lu L-M, Zhang K-X, Bai L, Wen Y-P (2013) Electroactive species-doped poly(3,4-ethylenedioxythiophene) films: enhanced sensitivity for electrochemical simultaneous determination of vitamins B2, B6 and C. Biosens Bioelectron 50:244–250. CrossRefGoogle Scholar
  27. 27.
    Nie T, Zhang K, Xu J, Lu L, Bai L (2014) A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C. J Electroanal Chem 717-718:1–9. CrossRefGoogle Scholar
  28. 28.
    Kaur B, Srivastava R (2014) Nanocrystalline metallosilicate modified electrodes for the simultaneous, sensitive, and selective determination of riboflavin, rutin, and pyridoxine. Electroanalysis 26(5):1078–1089. CrossRefGoogle Scholar
  29. 29.
    Dos Santos TAD, Barreto LM, Ritta AGSL, de Meneses WS, Nunes RS, Semaan FS (2013) Cost-effective composite electrode for the fast voltammetric screening and determination of riboflavin (B2) and pyridoxine (B6) in pharmaceuticals. Rev. Virtual Quim. doi:
  30. 30.
    Adams RN (1958) Carbon paste electrodes. Anal Chem 30(9):1576–1576. CrossRefGoogle Scholar
  31. 31.
    Tallman DE, Petersen SL (1990) Composite electrodes for electroanalysis: principles and applications. Electroanalysis 2(7):499–510. CrossRefGoogle Scholar
  32. 32.
    Buzzetti PHM, de Oliveira GC, Azevedo ALM, Michel RC, Ponzio EA, Semaan FS (2015) Conductive composites as versatile substrates for modeling of interfaces and sensors. In: Wythers MC (ed) Advances in materials science research, vol 21. Nova Science Publishers, New York, pp 1–23Google Scholar
  33. 33.
    Mc Creery RL (2008) Advanced carbon electrode materials for molecular electrochemistry, chemical reviews, ACS publications. Washington 108(7):2646–2687Google Scholar
  34. 34.
    Vilalba MM, Davis J (2008) New directions for carbon-based detectors: exploiting the versatility of of carbon substrates in electroanalysis. J Solid State Electrochem 12(10):1245–1254. CrossRefGoogle Scholar
  35. 35.
    Scholz, F, Bond, AM (2010) Electroanalytical methods: guide to experiments and applications, 2a. ed., Springer, New York, DOI:
  36. 36.
    Yogesvaran U, Chen SM (2008) Recent trends in the application of carbon nanotubes-polymer composite modified electrodes for biosensors: a review. Anal Lett 41(2):210–243. CrossRefGoogle Scholar
  37. 37.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev, ACS Publications, Washington 110(1):132–145Google Scholar
  38. 38.
    Potts JR, Dreyer DR, Bielawsky CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25. CrossRefGoogle Scholar
  39. 39.
    Sousa RA, Dos-Santos SX, Cavalheiro ETG, Brett CMA (2013) Graphite-polyurethane and graphite-silicone rubber composite electrodes for electrochemical characterization and determination of minoxidil. Electroanalysis 25(3):706–715. CrossRefGoogle Scholar
  40. 40.
    Silva AL, Corrêa MM, de Oliveira GC, Florez-Rodriguez PP, Rodrigues Costa CA, Semaan FS, Ponzio EA (2017) Development of graphite/silicone composites for use as flexible electrode materials. J Alloys Compd 691:220–229. CrossRefGoogle Scholar
  41. 41.
    Azevedo ALM, Oliveira RO, Ponzio EA, Semaan FS (2015) Sensor development exploiting graphite-epoxy composite as electrode material. IOP Conference Series: Materials Science and Engineering 97(1):012008. CrossRefGoogle Scholar
  42. 42.
    Czyżewski J, Burzyński P, Gaweł K, Meisner J (2009) Rapid prototyping of electrically conductive components using 3D printing technology. J Mater Process Technol 209(12–13):5281–5285. CrossRefGoogle Scholar
  43. 43.
    Zhu C, Han TYJ, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6(1):6962. CrossRefGoogle Scholar
  44. 44.
    Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5(1):11181. CrossRefGoogle Scholar
  45. 45.
    Wang H, Qian D, Xiao X, Gao S, Cheng J, He B, Liao L, Deng J (2017) A highly sensitive and selective sensor based on a graphene-coated carbon paste electrode modified with a computationally designed boron-embedded duplex molecularly imprinted hybrid membrane for the sensing of lamotrigine. Biosens Bioelectron 94:663–670. CrossRefGoogle Scholar
  46. 46.
    Trasatti S, Petri OA (1991) Real surface area measurements in electrochemistry. Pure & Applied Chemistry 63(5):711–734CrossRefGoogle Scholar
  47. 47.
    Agência Nacional de Vigilância Sanitária – ANVISA (2010) Farmacopéia Brasileira, Brasília http://wwwanvisagovbr/hotsite/cd_farmacopeia/indexhtm Access 06 Feb 2017
  48. 48.
    Motyakin MV, Schlick S (2002) Thermal degradation at 393 K of poly(acrylonitrile-butadiene-styrene) (ABS) containing a hindered amine stabilizer: a study by 1D and 2D electron spin resonance imaging (ESRI) and ATR–FTIR. Polym Degrad Stab 76(1):25–36. CrossRefGoogle Scholar
  49. 49.
    Yang M-H (2000) The thermal degradation of acrylonitrile-butadiene-styrene terpolymer under various gas conditions. Polym Test 19(1):105–110. CrossRefGoogle Scholar
  50. 50.
    Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stab 47(2):217–221. CrossRefGoogle Scholar
  51. 51.
    Dong D, Tasaka S, Aikawa S, Kamiya S, Inagaki N, Inoue Y (2001) Thermal degradation of acrylonitrile–butadiene–styrene terpolymer in bean oil. Polym Degrad Stab 73(2):319–326. CrossRefGoogle Scholar
  52. 52.
    Yang S, Rafael Castilleja J, Barrera EV, Lozano K (2004) Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polym Degrad Stab 83(3):383–388. CrossRefGoogle Scholar
  53. 53.
    Fǎtu D, Geambaş G, Segal E, Budrugeac P, Ciutacu S (1989) On the thermal decomposition of the copolymer ABS and of nylon polyamide. Thermochim Acta 149:181–187CrossRefGoogle Scholar
  54. 54.
    Shapi MM (1991) TG and DSC studies of some thermal properties and stability aspects of poly (acrylonitrile butadiene styrene), polystyrene and poly (acrylonitrile styrene) plastics. Thermochim Acta 175(1):25–34. CrossRefGoogle Scholar
  55. 55.
    Di Cortemiglia MPL, Camino G, Costa L, Guaita M (1985) Thermal degradation of ABS. Thermochim Acta 93:187–190. CrossRefGoogle Scholar
  56. 56.
    Mohammadi N, Adeh NB, Najafi M (2016) Synthesis and characterization of highly defective mesoporous carbon and its potential use in electrochemical sensors. RSC Adv 6(40):33419–33425. CrossRefGoogle Scholar
  57. 57.
    Dervisevic M, Çevik E, Durmuş Z, Şenel M (2016) Electrochemical sensing platforms based on the different carbon derivative incorporated interface. Mater Sci Eng C 58:790–798. CrossRefGoogle Scholar
  58. 58.
    Cole DP, Riddick JC, Iftekhar Jaim HM, Strawhecker KE, Zander NE (2016) Interfacial mechanical behavior of 3D printed ABS. J Appl Polym Sci 133(30).
  59. 59.
    Marissen R, Schudy D, Kemp AVJM, Coolen SMH, Duijzings WG, Van Der Pol A, Van Gulick AJ (2001) The effect of material defects on the fatigue behaviour and the fracture strain of ABS. J Mater Sci 36(17):4167–4180. CrossRefGoogle Scholar
  60. 60.
    Balart R, Sánchez L, López J, Jiménez A (2006) Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polym Degrad Stab 91(3):527–534. CrossRefGoogle Scholar
  61. 61.
    Ma H, Wang J, Fang Z (2012) Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polym Degrad Stab 97(9):1596–1605CrossRefGoogle Scholar
  62. 62.
    Beaunier L, Keddam M, Garcı́a-Jareño JJ, Vicente F, Navarro-Laboulais J (2004) Surface structure determination by SEM image processing and electrochemical impedance of graphite+polyethylene composite electrodes. J Electroanal Chem 566(1):159–167. CrossRefGoogle Scholar
  63. 63.
    Bailey MR, Schultz ZD (2016) SERS speciation of the electrochemical oxidation-reduction of riboflavin. Analyst 41(17):5078–5087CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Grasielli C. de Oliveira
    • 1
  • Lucas C. Pereira
    • 1
  • Ana L. Silva
    • 1
  • Felipe S. Semaan
    • 1
  • Marilza Castilho
    • 2
  • Eduardo A. Ponzio
    • 1
  1. 1.Grupo de Eletroquímica e Eletroanalítica (G E), Instituto de QuímicaUniversidade Federal FluminenseNiteróiBrazil
  2. 2.Grupo de Eletroanalítica e Novos Materiais (GENMAT), Departamento de QuímicaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations