Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1581–1590 | Cite as

Electrochemical and spectroscopic characterization of the interaction between β-lapachone and PAMAM derivatives immobilized on surface electrodes

  • Anna Caroline Lima Candido
  • Marilya Palmeira Galdino da Silva
  • Emanuella G. da Silva
  • Fabiane Caxico de Abreu
Original Paper
  • 32 Downloads

Abstract

The β-lapachone (βLP) is a very promising antitumor drug, but its low solubility in water limits its clinical application. This work reports the study of encapsulation of βLP, a quinone with polyamidoamine dendrimers (PAMAM) immobilized on the surface of the carbon nanotubes and gold electrodes. This polymer can form complexes with bioactive substances, having low toxicity and an excellent drug delivery system. The electrochemical techniques proved to be an important tool for the study of the inclusion complex, and electrochemical measurements were obtained by the cyclic voltammetry technique in a protic medium (sodium sulfate, 0.2 mol L−1 with 5% of the ethanol). To calculate the constant (K) interaction and the number of activation sites (n) between dendrimer and βLP, the working gold electrode was modified with 11-mercaptoundecanoic acid (MUA) and PAMAM (MUA/PAMAM) and the values obtained from them, using the equation adapted from Scatchard-Klotz, were K = 2.9 × 104 M−1 and n = 22.77, respectively. Observing the generated voltammograms and impedance experiments, we can note a much larger and significant interaction between the quinone with PAMAM and the MUA/PAMAM electrode than with MUA alone or without modification. FTIR and UV–Vis studies were also performed to demonstrate the formation of an inclusion complex among βLP and PAMAM.

Keywords

Electrochemistry Encapsulation β-Lapachone Impedance spectroscopy 

References

  1. 1.
    Schaffner-Sabba K, Schmidt-Ruppin KH, Wehrli W, Schuerch AR, Wasley JWF (1984) Beta-lapachone: synthesis of derivatives and activities in tumor models. J Med Chem 27(8):990–994.  https://doi.org/10.1021/jm00374a010 CrossRefGoogle Scholar
  2. 2.
    Chakrabarti G, Silvers MA, Ilcheva M, Liu Y, Moore ZR, Luo X, Gao J, Anderson G, Liu L, Sarode V, Gerber DE, Burma S, DeBerardinis RJ, Gerson SL, Boothman DA (2015) Tumor-selective use of DNA base excision repair inhibition in pancreatic cancer using the NQO1 bioactivatable drug, β-lapachone. Sci Rep 5(1):17066.  https://doi.org/10.1038/srep17066 CrossRefGoogle Scholar
  3. 3.
    De Castro SL, Emery FS, da Silva Júnior EN (2013) Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones. Eur J Med Chem 69:678–700.  https://doi.org/10.1016/j.ejmech.2013.07.057 CrossRefGoogle Scholar
  4. 4.
    De Andrade-Neto VF, Goulart MO, da Silva Filho JF, da Silva MJ, Pinto MCFR, Pinto AV, Zalis MG, Carvalho LH, Krettli AU (2004) Antimalarial activity of phenazines from lapachol, beta-lapachone and its derivatives against plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 14(5):1145–1149.  https://doi.org/10.1016/j.bmcl.2003.12.069 CrossRefGoogle Scholar
  5. 5.
    Pardee AB, Li YZ, Li CJ (2002) Cancer therapy with beta-lapachone. Curr Cancer Drug Targets 2(3):227–242.  https://doi.org/10.2174/1568009023333854 CrossRefGoogle Scholar
  6. 6.
    Moon DO, Choi YH, Kim ND, Park YM, Kim GY (2007) Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7(4):506–514.  https://doi.org/10.1016/j.intimp.2006.12.006 CrossRefGoogle Scholar
  7. 7.
    Cavalcanti IMF, Mendonça EAM, Lira MCB, Honrato SB, Camara CA, Amorim RVS, Filho JM, Rabello MM, Hernandes MZ, Ayala AP, Santos-Magalhães NS (2011) The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach. Eur J Pharm Sci 44(3):332–340.  https://doi.org/10.1016/j.ejps.2011.08.011 CrossRefGoogle Scholar
  8. 8.
    Dong Y, Shook-Fong C, Blanco E, Bey EA, Kabbani W, Xie XJ, Bornmann WG, Boothman DA, Gao J (2009) Intratumoral delivery of β-lapachone via polymer implants for prostate cancer therapy. Clin Cancer Res 15(1):131–139.  https://doi.org/10.1158/1078-0432.CCR-08-1691 CrossRefGoogle Scholar
  9. 9.
    Blanco E, Bey EA, Dong Y, Weinberg BD, Sutton DM, Boothman DA, Gao J (2007) β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release 122(3):365–374.  https://doi.org/10.1016/j.jconrel.2007.04.014 CrossRefGoogle Scholar
  10. 10.
    Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33(1):113–137.  https://doi.org/10.1016/j.progpolymsci.2007.09.003 CrossRefGoogle Scholar
  11. 11.
    Bikiaris D (2012) Nanomedicine in cancer treatment: drug targeting and the safety of the used materials for drug nanoencapsulation. Biochem Pharmacol 1:e122CrossRefGoogle Scholar
  12. 12.
    Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115.  https://doi.org/10.1016/j.addr.2012.09.030 CrossRefGoogle Scholar
  13. 13.
    Pan S, Cao D, Fang R, Yi W, Huang H, Tian S, Feng M (2013) Cellular uptake and transfection activity of DNA complexes based on poly(ethylene glycol)-poly-(L-glutamine) copolymer with PAMAM G2. J Mater Chem B 1(38):5114–5127.  https://doi.org/10.1039/c3tb20649a CrossRefGoogle Scholar
  14. 14.
    Pourianazar NT, Mutlu P, Gunduz U (2014) Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J Nanopart Res 16(4):2342.  https://doi.org/10.1007/s11051-014-2342-1 CrossRefGoogle Scholar
  15. 15.
    Ferreira FR, da Silva EG, De Leo LPM, Calvo EJ, Bento ED, Goulart MOF, de Abreu FC (2010) Electrochemical investigations into host–guest interactions of a natural antioxidant compound with β-cyclodextrin. Electrochim Acta 56(2):797–803.  https://doi.org/10.1016/j.electacta.2010.09.066 CrossRefGoogle Scholar
  16. 16.
    Abreu FC, Ferreira DCM, Goulart MOF, Buriez O, Amatore C (2007) Electrochemical activation of β-lapachone in β-cyclodextrin inclusion complexes and reactivity of its reduced form towards oxygen in aqueous solutions. J Electroanal Chem 608(2):125–132.  https://doi.org/10.1016/j.jelechem.2007.05.020 CrossRefGoogle Scholar
  17. 17.
    Mohandoss S, Stalin T (2017) Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1, 2-dihydroxyanthraquinones. Photochem Photobiol Sci 16(4):476–488.  https://doi.org/10.1039/C6PP00285D CrossRefGoogle Scholar
  18. 18.
    Palomar-Pardavé M, Corona-Avendaño S, Romero-ROmo M, Alarcón-Angeles G, Merkoçi A, Ramírez-Silva MT (2014) Supramolecular interaction of dopamine with β-cyclodextrin: an experimental and theoretical electrochemical study. J Electroanal Chem 717:103–109CrossRefGoogle Scholar
  19. 19.
    Yang L, Fan S, Deng G, Li Y, Ran X, Zhao H, Li CP (2015) Bridged β-cyclodextrin-functionalized MWCNT with higher supramolecular recognition capability: the simultaneous electrochemical determination of three phenols. Biosens Bioelectron 68:617–625.  https://doi.org/10.1016/j.bios.2015.01.059 CrossRefGoogle Scholar
  20. 20.
    Yang L, Zhao H, Li CP, Fan S, Li B (2015) Dual β-cyclodextrin functionalized Au@ SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens Bioelectron 64:126–130.  https://doi.org/10.1016/j.bios.2014.08.068 CrossRefGoogle Scholar
  21. 21.
    Ran X, Yang L, Zhang J, Deng G, Li Y, Xie X, Zhao H, Li CP (2015) Highly sensitive electrochemical sensor based on β-cyclodextrin–gold@ 3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. Anal Chim Acta 892:85–94.  https://doi.org/10.1016/j.aca.2015.08.046 CrossRefGoogle Scholar
  22. 22.
    Ran X, Yang L, Zhao G, Ye H, Zhang Y, Fan S, Xie X, Zhao H, Li CP (2015) Simultaneous determination of two flavonoids based on disulfide linked β-cyclodextrin dimer and Pd cluster functionalized graphene-modified electrode. RSC Adv 5(75):60775–60785.  https://doi.org/10.1039/C5RA12865J CrossRefGoogle Scholar
  23. 23.
    Yang L, Ran X, Cai L, Li Y, Zhao H, Li CP (2016) Calix [8] arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 83:347–352.  https://doi.org/10.1016/j.bios.2016.04.079 CrossRefGoogle Scholar
  24. 24.
    Zhao G, Yang L, Wu S, Zhao H, Tang E, Li CP (2017) The synthesis of amphiphilic pillar [5] arene functionalized reduced graphene oxide and its application as novel fluorescence sensing platform for the determination of acetaminophen. Biosens Bioelectron 91:863–869.  https://doi.org/10.1016/j.bios.2017.01.053 CrossRefGoogle Scholar
  25. 25.
    Zhao H, Yang L, Li Y, Ran X, Ye H, Zhao G, Zhang Y, Liu F, Li CP (2017) A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical re cognition of tadalafil. Biosens Bioelectron 89(Pt 1):361–369.  https://doi.org/10.1016/j.bios.2016.07.016 CrossRefGoogle Scholar
  26. 26.
    Yang L, Zhao H, Li Y, Zhang Y, Ye H, Zhao G, Ran X, Liu F, Li CP (2017) Insights into the recognition of dimethomorph by disulfide bridged β–cyclodextrin and its high selective fluorescence sensing based on indicator displacement assay. Biosens Bioelectron 87:737–744.  https://doi.org/10.1016/j.bios.2016.09.044 CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Liu X, Li L, Guo Z, Xue Z, Lu X (2016) An electrochemical paracetamol sensor based on layer-by-layer covalent attachment of MWCNTs and a G4.0 PAMAM modified GCE. Anal Methods 8(10):2218–2225.  https://doi.org/10.1039/C5AY03241E CrossRefGoogle Scholar
  28. 28.
    Bustos E, Manríquez J, Juaristi E, Chapman TW, Godínez LA (2008) Electrochemical study of β-Cyclodextrin binding with ferrocene tethered onto a gold surface via PAMAM dendrimers. J Braz Chem Soc 19(5):1010–1016.  https://doi.org/10.1590/S0103-50532008000500028 CrossRefGoogle Scholar
  29. 29.
    Şenel M, Nergiz C (2012) Development of a novel amperometric glucose biosensor based on copolymer of pyrrole-PAMAM dendrimers. Synth Met 162(7-8):688–694.  https://doi.org/10.1016/j.synthmet.2012.02.018 CrossRefGoogle Scholar
  30. 30.
    Astruc D (2012) Electron-transfer processes in dendrimers and their implication in biology, catalysis, sensing and nanotechnology. Nat Chem 4(4):255–267.  https://doi.org/10.1038/nchem.1304 CrossRefGoogle Scholar
  31. 31.
    Dong J, Zhao H, Xu M, Ma Q, Ai S (2013) A label-free electrochemical impedance immunosensor based on AuNPs/ PAMAM-MWCNT-Chi nanocomposite modified glassy carbon electrode for detection of Salmonella typhimurium in milk. Food Chem 141(3):1980–1986.  https://doi.org/10.1016/j.foodchem.2013.04.098 CrossRefGoogle Scholar
  32. 32.
    Wu CC, Lin CH, Wang WS (2009) Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy. Talanta 19:62–67CrossRefGoogle Scholar
  33. 33.
    Devarakonda B, Hill RA, de Villiers MM (2004) The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm 284(1-2):133–140.  https://doi.org/10.1016/j.ijpharm.2004.07.006 CrossRefGoogle Scholar
  34. 34.
    Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 259(1-2):143–160.  https://doi.org/10.1016/S0378-5173(03)00225-4 CrossRefGoogle Scholar
  35. 35.
    Abderrezak A, Bourassa P, Mandeville JS, Sedaghat-Herati R, Tajmir-Riahi HA (2012) Dendrimers bind antioxidant polyphenols and cisplatin drug. PLoS One 7(3):e33102.  https://doi.org/10.1371/journal.pone.0033102 CrossRefGoogle Scholar
  36. 36.
    Abreu FC, Goulart MOF, Brett AMO (2002) Reduction of lapachones in aqueous media at a glassy carbon electrode. Electroanalysis 14(1):29–34.  https://doi.org/10.1002/1521-4109(200201)14:1<29::AID-ELAN29>3.0.CO;2-A CrossRefGoogle Scholar
  37. 37.
    Xu L, Zhu Y, Tang L, Yang X, Li C (2007) Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis 19(6):717–722.  https://doi.org/10.1002/elan.200603805 CrossRefGoogle Scholar
  38. 38.
    Çevik E, Bahar Ö, Şenel M, Abasıyanık MF (2016) Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens Bioelectron 86:1074–1079.  https://doi.org/10.1016/j.bios.2016.07.064 CrossRefGoogle Scholar
  39. 39.
    Maeda Y, Fukuda T, Yamamoto H, Kitano H (1997) Regio- and stereoselective complexation by a self-assembled monolayer of thiolated cyclodextrin on a gold electrode. Langmuir 13(16):4187–4189.  https://doi.org/10.1021/la9701384 CrossRefGoogle Scholar
  40. 40.
    Devarakonda B, Otto DP, Judefeind A, Hill RA, de Villiers MM (2007) Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int J Pharm 345(1-2):142–153.  https://doi.org/10.1016/j.ijpharm.2007.05.039 CrossRefGoogle Scholar
  41. 41.
    Kadar M, Biró A, Tóth K, Vermes B, Huszthy (2005) Spectrophotometric determination of the dissociation constants of crown ethers with grafted acridone unit in methanol based on Benesi-Hildebrand evaluation. Spectrochim Acta A 62(4-5):1032–1038.  https://doi.org/10.1016/j.saa.2005.04.034 CrossRefGoogle Scholar
  42. 42.
    Wang Y, Rogers EI, Belding SR, Compton RG (2010) The electrochemical reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)-imide, [C2mim][NTf2]: a voltammetric study of the comproportionation between benzoquinone and the benzoquinone dianion. J Electroanal Chem 648(2):134–142.  https://doi.org/10.1016/j.jelechem.2010.07.016 CrossRefGoogle Scholar
  43. 43.
    Bobrovnik SA (2002) Ligand–receptor interaction Klotz–Hunston problem for two classes of binding sites and its solution. J Biochem Biophys Methods 52(2):135–114.  https://doi.org/10.1016/S0165-022X(02)00069-6 CrossRefGoogle Scholar
  44. 44.
    Buczkowski A, Sekowski S, Grala A, Palecz D, Milowska K, Urbaniak P, Gabryelak T, Piekarski H, Palecz B (2011) Interaction between PAMAM-NH2 G4 dendrimer and 5-fluorouracil in aqueous solution. Int J Pharm 408(1-2):266–270.  https://doi.org/10.1016/j.ijpharm.2011.02.014 CrossRefGoogle Scholar
  45. 45.
    Silva MPG, Candido ACL, Lima SL, Aquino TM, Junior FJBM, Abreu FC (2017) Electrochemical investigation of the toxicity of a new nitrocompound and its interaction with β-cyclodextrin and polyamidoamine third-generation. Electrochim Acta 251:442–451.  https://doi.org/10.1016/j.electacta.2017.08.111 CrossRefGoogle Scholar
  46. 46.
    Kleinman MH, Flory JH, Tomalia DA, Turro NJ (2000) Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J Phys Chem B 104(48):11472–11479.  https://doi.org/10.1021/jp001882r CrossRefGoogle Scholar
  47. 47.
    Mustafa R, Luo Y, Wu Y, Guo R, Shi X (2015) Dendrimer-functionalized laponite nanodisks as a platform for anticancer drug delivery. Nano 5:1716–1731Google Scholar
  48. 48.
    Cunha-Filho MSS, Martínez-Pacheco R, Landín M (2007) Compatibility of the antitumoral β-lapachone with different solid dosage forms excipients. J Pharm Biomed Anal 45:590–598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna Caroline Lima Candido
    • 1
  • Marilya Palmeira Galdino da Silva
    • 1
  • Emanuella G. da Silva
    • 1
  • Fabiane Caxico de Abreu
    • 1
  1. 1.Instituto de Química e Biotecnologia, Universidade Federal de AlagoasMaceióBrazil

Personalised recommendations