Skip to main content

Advertisement

Log in

Biosensor for the oxidative stress biomarker glutathione based on SAM of cobalt phthalocyanine on a thioctic acid modified gold electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Self-assembled monolayer (SAM) of cobalt teraaminophthalocyanine (CoTAPc) was developed on thioctic acid (TA) dithiol modified gold electrode and electrochemically evaluated as a glutathione (GSH) selective biosensor. The CoTAPc-TA-Au modified electrode was developed by the covalent immobilization of the CoTAPc as the electrochemical mediator onto previously prepared gold electrode modified with TA (TA-Au) via amid bond formation with the carboxylic group of TA, producing well-organized SAM of the mediator. For comparison, another electrode modified with 3-mercaptopropionic acid (MPA) as a monothiol linker instead of TA was similarly prepared. The electrode surface modification was characterized using SEM, AFM, CV, and EIS. The contact angle measurements of the surface confirmed the formation of CoTAPc SAM on both TA and MPA modified electrodes. The CoTAPc-TA-Au modified electrode showed enhanced catalytic activity for GSH oxidation compared to that of CoTAPc-MPA-Au, indicating that the TA dithiol allowed for more coverage of the catalyst layer on the electrode surface with stronger binding. The experimental parameters controlling the voltammetric processes like scan rate and pH of sample solution were optimized. Using DPV technique, the proposed sensor exhibited a linear response of oxidation peak current vs. GSH concentration, over the concentration range between 10 and 100 μmol L−1 with a LOD of 1.5 μmol L−1 for the CoTAPc-TA-Au modified electrode compared to 5.5 μmol L−1 GSH, for the CoTAPc-MPA-Au electrode. The proposed sensor was utilized for detection of glutathione in some hemolyzed blood samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52(1):711–760

    Article  CAS  PubMed  Google Scholar 

  2. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R (2009) Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46(5-6):241–281

    Article  CAS  PubMed  Google Scholar 

  3. Leonel C, Gelaleti GB, Jardim BV, Moschetta MG, Regiani VR, Oliveira JG, Zuccari DAPC (2014) Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors. BMC Vet Res 10(1):49–58

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39

    Article  CAS  PubMed  Google Scholar 

  5. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57(3-4):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossi R, Dalle-Donne I, Milzani A, Giustarin D (2006) Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress. Clin Chem 52(7):1406–1414

    Article  CAS  PubMed  Google Scholar 

  7. Castejon AM, Spaw JA (2014) Autism and oxidative stress interventions: impact on autistic behavior. Austin J Pharmacol Ther 2:6–11

    Google Scholar 

  8. Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, Ko Y, Veledar E, Samady H, Zafari AM, Sperling L, Vaccarino V, Jones DP, Quyyum AA (2016) Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133(4):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toyo’oka T (2009) Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B 877(28):3318–3330

    Article  CAS  Google Scholar 

  10. Harfield JC, Batchelor-McAuley C, Compton RG (2012) Electrochemical determination of glutathione: a review. Analyst 137(10):2285–2296

    Article  CAS  PubMed  Google Scholar 

  11. Bai S, Chen Q, Lu C, Lin JM (2013) Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta 768:96–101

    Article  CAS  PubMed  Google Scholar 

  12. Schlereth DD, Katz E, Schmidt HL (1994) Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for nadh oxidation. Electroanalysis 6(9):725–734

    Article  CAS  Google Scholar 

  13. Willner I, Riklin A (1994) Electrical communication between electrodes and NAD(P)+-dependent enzymes using pyrroloquinolinequinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors. Anal Chem 66(9):1535–1539

    Article  CAS  Google Scholar 

  14. Collinson M, Bowden EF, Tarlov MJ (1992) Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes. Langmuir 8(5):1247–1250

    Article  CAS  Google Scholar 

  15. Duan C, Meyerhoff ME (1994) Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies. Anal Chem 66(9):1369–1377

    Article  CAS  PubMed  Google Scholar 

  16. Widrig CA, Chung C, Porter M (1991) The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J Electroanal Chem 310(1-2):335–359

    Article  CAS  Google Scholar 

  17. Gatto E, Stella L, Formaggio F, Toniolo C, Lorenzelli L, Venanzi M (2008) Electroconductive and photocurrent generation properties of self-assembled monolayers formed by functionalized, conformationally-constrained peptides on gold electrodes. J Peptide Sci 14(2):184–191

    Article  CAS  Google Scholar 

  18. Koufaki M, Detsi A, Kiziridi C (2009) Multifunctional lipoic acid conjugates. Curr Med Chem 16(35):4728–4742

    Article  CAS  PubMed  Google Scholar 

  19. Saeed AA, Singh B, Abbas MN, Issa YM, Dempsey E (2015) Electrocatalytic nitrite determination using iron phthalocyanine modified gold nanoparticles. Electroanal 27(5):1086–1096

    Article  CAS  Google Scholar 

  20. Abbas MN, Saeed AA, Singh B, Radowan AA, Dempsey E (2015) A cysteine sensor based on a gold nanoparticle–iron phthalocyanine modified graphite paste electrode. Anal Methods 7(6):2529–2536

    Article  CAS  Google Scholar 

  21. Mashazi PN, Ozoemena KI, Nyokong T (2006) Tetracarboxylic acid cobalt phthalocyanine SAM on gold: potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim Acta 52(1):177–186

    Article  CAS  Google Scholar 

  22. Pereira-Rodrigues N, Cofré R, Zagal JH, Bedioui F (2007) Electrocatalytic activity of cobalt phthalocyanine CoPc adsorbed on a graphite electrode for the oxidation of reduced l-glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH. Bioelectrochem 70(1):147–154

    Article  CAS  Google Scholar 

  23. Xu H, Xiao J, Liu B, Griveau S, Bedioui F (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:438–444

    Article  CAS  PubMed  Google Scholar 

  24. Hosseini H, Mahyari M, Bagheri A, Shaabani A (2014) A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide. Biosens Bioelectron 52:136–142

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Chen X, Evans DG, Yang WS (2011) A novel biosensor for reduced l-glutathione based on cobalt phthalocyaninetetrasulfonate-intercalated layered double hydroxide modified glassy carbon electrodes. Sensors Actuators B Chem 160(1):1444–1449

    Article  CAS  Google Scholar 

  26. Honeychurch KC, Hart JP (2012) The chronoamperometric and voltammetric behaviour of glutathione at screen-printed carbon micro-band electrodes modified with cobalt phthalocyanine. Adv Anal Chem Instrum 2:46–52

    CAS  Google Scholar 

  27. Sehlotho N, Griveau S, Ruillé N, Boujtita M, Nyokong T, Bedioui F (2008) Electro-catalyzed oxidation of reduced glutathione and 2-mercaptoethanol by cobalt phthalocyanine-containing screen printed graphite electrodes. Mater Sci Eng C 28(5-6):606–612

    Article  CAS  Google Scholar 

  28. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version. 3.5,by C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, http://srdata.nist.g

  29. Achar BN, Fohlen GM, Parker JA, Keshavayya J (1987) Synthesis and structural studies of metal(II) 4,9,16,23-phthalocyanine tetraamines. Polyhedron 6(6):1463–1467

    Article  CAS  Google Scholar 

  30. Willey TM, Vance AL, Bostedt C, van Buuren T, Meulenberg RW, Terminello LJ, Fadley CS (2004) Surface structure and chemical switching of thioctic acid adsorbed on au(111) as observed using near-edge X-ray absorption fine structure. Langmuir 20(12):4939–4944

    Article  CAS  PubMed  Google Scholar 

  31. Matemadombo F, Westbroek P, Nyokong T, Ozoemena K, De Clerck K, Kiekens P (2007) Immobilization of tetra-amine substituted metallophthalocyanines at gold surfaces modified with mercaptopropionic acid or DTSP-SAMs. Electrochim Acta 52(5):2024–2031

    Article  CAS  Google Scholar 

  32. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61(46):10827–10852

    Article  CAS  Google Scholar 

  33. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie

    Google Scholar 

  34. Briggs D, Seah MP (1990) Practical surface analysis, 2nd edn. Wiley & Sons, Chichester

    Google Scholar 

  35. Fang Z, Liu L, Xu L, Yin X, Zhong X (2008) Synthesis of highly stable dihydrolipoic acid capped water-soluble CdTe nanocrystals. Nanotech 19(23):235603

    Article  CAS  Google Scholar 

  36. Campuzano S, Pedrero M, Montemayor C, Fatás E, Pingarrón JM (2006) Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J Electroanal Chem 586(1):112–121

    Article  CAS  Google Scholar 

  37. Braik M, Dridi C, Ali A, Abbas MN, Ben Ali M, Errachid A (2015) Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org Electron 16:77–86

    Article  CAS  Google Scholar 

  38. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  39. Tian F, Gourine AV, Huckstepp RTR, Dale N (2009) Anal Chim Acta 645(1-2):86–91

    Article  CAS  PubMed  Google Scholar 

  40. Laviron E (1979) J Electroanal Chem 100(1-2):263–270

    Article  CAS  Google Scholar 

  41. Prodromidis MI, Florou AB, Tzouwara-Karayanni SM, Karayannis MI (2000) The importance of surface covering in the electrochemical study of electrochemically modified electrodes. Electroanal 12(18):1498–1500

    Article  CAS  Google Scholar 

  42. Gulppi MA, Páez MA, Costamagna JA, Cárdenas-Jirón G, Bedioui F, Zagal JH (2005) Inverted correlations between rate constants and redox potential of the catalyst for the electrooxidation of 2-aminoethanethiol mediated by surface confined substituted cobalt-phthalocyanines. J Electroanal Chem 580(1):50–56

    Article  CAS  Google Scholar 

  43. Raoof JB, Ojani R, Baghayeri M (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sensors Actuators B 143(1):261–269

    Article  CAS  Google Scholar 

  44. Lenton KJ, Therriault H, Cantin AM, Fülöp T, Payette H, Wagner JR (2000) Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am J Clin Nutr 71(5):1194–1200

    Article  CAS  PubMed  Google Scholar 

  45. Chung JS, Haque R, Mazumder DNG, Moore LE, Ghosh N, Samanta S, Mitra S, Hira-Smith MM, von Ehrenstein O, Basu A, Liaw J, Smith AH (2006) Blood concentrations of methionine, selenium, beta-carotene, and other micronutrients in a case-control study of arsenic-induced skin lesions in West Bengal, India. Environ Res 101(2):230–237

    Article  CAS  PubMed  Google Scholar 

  46. Bridgeman MME, Marsden M, MacNee W, Flenley DC, Ryle AP (1991) Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax 46(1):39–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE (2018) A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem 829:230–240

    Article  CAS  Google Scholar 

  48. Hernández-Ibánez N, Sanjuán I, Montiel MÁ, Foster CW, Banks CE, Iniesta J (2016) L-Cysteine determination in embryo cell culture media using Co(II)-phthalocyanine modified disposable screen-printed electrodes. J Electroanal Chem 780:303–310

    Article  CAS  Google Scholar 

  49. Ziyatdinova G, Kozlova E, Budnikov H (2018) Selective electrochemical sensor based on the electropolymerized pcoumaric acid for the direct determination of L-cysteine. Electrochim Acta 270:369–377

    Article  CAS  Google Scholar 

  50. Kurniawan A, Kurniawan F, Gunawan F, Chou SH, Wang MJ (2019) Disposable electrochemical sensor based on copper-electrodeposited screen-printed gold electrode and its application in sensing L-Cysteine. Electrochim Acta 293:318–327

    Article  CAS  Google Scholar 

  51. Premlatha S, Selvarani K, Bapu GNKR (2018) Facile electrodeposition of hierarchical co-Gd2O3 nanocomposites for highly selective and sensitive electrochemical sensing of L–cysteine. ChemistrySelect 3(9):2665–2674

    Article  CAS  Google Scholar 

  52. Moore RR, Banks CE, Compton RG (2004) Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst 129(8):755–758

    Article  CAS  PubMed  Google Scholar 

  53. Tang H, Chen J, Nie L, Yao S, Kuang Y (2006) Electrochemical oxidation of glutathione at well aligned carbon nanotube array electrode. Electrochim Acta 51(15):3046–3051

    Article  CAS  Google Scholar 

  54. Rover LR Jr, Kubota LT, Hoehr NF (2001) Development of an amperometric biosensor based on glutathione peroxidase immobilized in a carbodiimide matrix for the analysis of reduced glutathione from serum. Clin Chim Acta 308(1-2):55–67

    Article  CAS  PubMed  Google Scholar 

  55. Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y (2004) Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal Chem 76(21):6500–6505

    Article  CAS  PubMed  Google Scholar 

  56. Abiman P, Wildgoose GG, Compton RG (2007) Electroanalytical exploitation of nitroso phenyl modified carbon-thiol interactions: application to the low voltage determination of thiols. Electroanal 19(4):437–444

    Article  CAS  Google Scholar 

  57. Olmos Moya PM, Martínez Alfaro M, Kazemi R, Alpuche-Avilés MA, Griveau S, Bedioui F, Gutiérrez Granados S (2017) Simultaneous electrochemical speciation of oxidized and reduced glutathione. Redox profiling of oxidative stress in biological fluids with a modified carbon electrode. Anal Chem 89(20):10726–10733

    Article  CAS  PubMed  Google Scholar 

  58. Yuan B, Zhang R, Jiao X, Li J, Shi H, Zhang D (2014) Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochem Commun 40:92–95

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the EU for supporting this work through FP7 Marie Curie IRSES Project: Micro/nano sensors for early cancer warning system–diagnostic and prognostic information “SMARTCANCERSENS.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Nooredeen Abbas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M.N., Saeed, A.A., Ali, M.B. et al. Biosensor for the oxidative stress biomarker glutathione based on SAM of cobalt phthalocyanine on a thioctic acid modified gold electrode. J Solid State Electrochem 23, 1129–1144 (2019). https://doi.org/10.1007/s10008-018-04191-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04191-4

Keywords

Navigation