Skip to main content
Log in

Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The accelerated degradation of a commercial LSCF/YDC/YSZ/Ni-YSZ solid oxide electrolyzer cell (La0.6Sr0.4Co0.2Fe0.8O3-δ/Y0.1CeO1.95/Y0.08Zr0.92O1.96/Ni-YSZ) contaminated by Si-containing impurities is studied with time under up to − 1.7 A cm−2 applied. Above ~ − 0.6 A cm−2, a new region appears in the polarization curve. This region corresponds to electronic conduction in the yttria-stabilized zirconia (YSZ) electrolyte, induced by the reduction under high current conditions. A shift in the typical frequencies (relaxation times) toward lower frequencies is then observed for the entire impedance spectra. This shift results finally in the disappearance of the positive loop related to the polarization resistance and the appearance of a negative (inductance type) loop which crosses the real axis (Z’) at the lowest frequencies to become positive again. This is characteristic for an electrode process mode in which the electrochemical redox reactions vanish while the cell current becomes mainly electronic due to the reduction of the YSZ electrolyte. This trend increases with time. Such a characterization of the electronic conduction of the YSZ electrolyte by electrochemical impedance spectroscopy has not been reported to date under electrolysis mode, to the best of our knowledge. Post-mortem analysis by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX) shows detrimental degradation of the electrolyte after only 360 h of overall testing duration with numerous micropores in the YSZ volume, and cracks and delamination at the yttria-doped ceria (YDC)/YSZ interface. EDX analysis reveals (i) a migration of La, Sr, Co, and Fe elements from lanthanum strontium cobalt ferrite (LSCF) anode to YDC layer and YSZ electrolyte and (ii) a very important shift of Ni from Ni-YSZ cathode to YSZ and YDC, and also to LSCF anode in a lower proportion. This study highlights the critical issue that impurities represent for solid oxide electrolysis cell operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goltsov VA, Veziroglu TN (2001) Int J Hydrog Energy 26(9):909–915

    Article  CAS  Google Scholar 

  2. Rosen MA, Scott DS (1998) Int J Hydrog Energy 23(8):653–659

    Article  CAS  Google Scholar 

  3. Nechache A, Cassir M, Ringuedé A (2014) J Power Sources 258:164–181

  4. Nechache A, Boukamp BA, Cassir M, Ringuedé A (2018) J Solid State Electrochem. First Online https://doi.org/10.1007/s10008-018-4116-7

  5. Kharton VV (ed) (2009) Solid state electrochemistry I: fundamentals, materials and their applications. Wiley, Weinheim

    Google Scholar 

  6. Durov AV, Naidich YV, Kostyuk BD (2005) J Mater Sci 40(9-10):2173–2178

    Article  CAS  Google Scholar 

  7. Warner TE, Janes R, Edwards PP (1991) J Mater Sci Lett 10(16):937–938

    Article  CAS  Google Scholar 

  8. Weininger JL, Zemany PD (1954) J Chem Phys 22(8):1469–1470

    Article  CAS  Google Scholar 

  9. Jacquin M, Guillou M, Millet J (1967) CR Acad Sci 264:2101

    CAS  Google Scholar 

  10. Etsell TH, Flengas SN (1971) J Electrochem Soc 118(12):1890–1900

    Article  CAS  Google Scholar 

  11. Brook RJ, Pelzmann WL, Kroger FA (1971) J Electrochem Soc 118(2):185–192

    Article  CAS  Google Scholar 

  12. Perfilev MV, Palguev SF (1967) Electrochem Molten Solid Electrolytes 4:147

    Google Scholar 

  13. Bauerle JE (1969) J Phys Chem Solids 30(12):2657–2670

    Article  CAS  Google Scholar 

  14. Karpachev SV, Ovchinnikov YM (1969) Soy Electrochem 5:181

    Google Scholar 

  15. Kleitz M. (1968) Thesis, Grenoble University

  16. Yanagida H, Brook RJ, Kroger FA (1970) J Electrochem Soc 117(5):593–602

    Article  CAS  Google Scholar 

  17. Tedmon CS, Spacil HS, Mitoff SP (1969) J Electrochem Soc 116(9):1170–1175

    Article  Google Scholar 

  18. Gokhshstein YP, Safonov AA (1970) High Temp 8:368

    Google Scholar 

  19. Casselton REW (1974) J Appl Electrochem 4(1):25–48

    Article  CAS  Google Scholar 

  20. Fabry P., Kleitz M. (1976) in: M. Kleitz, J. Dupuy (Eds.), Electrode processes in solid state ionics, Reidel Publ. Comp., Dordrecht, pp. 331–365

  21. Janek J, Korte C (1999) Solid State Ionics 116(3-4):181–195

    Article  CAS  Google Scholar 

  22. Boulfrad S, Djurado E, Fouletier J (2009) Solid State Ionics 180(14-16):978–983

    Article  CAS  Google Scholar 

  23. Knibbe RML, Traulsen MLA, Hauch ASD, Ebbesen SDM, Mogensen M (2010) J Electrochem Soc 157(8):B1209–B1217

    Article  CAS  Google Scholar 

  24. Laguna-Bercero MA, Campana R, Larrea A, Kilner JA, Orera VM (2011) J Power Sources 196(21):8942–8947

    Article  CAS  Google Scholar 

  25. Kim J, Ji H, Dasari HP, Shin D, Song H, Lee JH, Kim BK, Je HJ, Lee HW, Yoon KJ (2013) Int J Hydrog Energy 38(3):1225–1235

    Article  CAS  Google Scholar 

  26. Chen M, Liu YL, Bentzen JJ, Zhang W, Sun X, Hauch A, Tao Y, Bowen JR, Hendriksen PV (2013) J Electrochem Soc 160(8):F883–F891

    Article  CAS  Google Scholar 

  27. Sun X, Chen M, Hjalmarsson P, Ebbesen SD, Jensen SH, Mogensen M, Hendriksen PV (2012) ECS Trans 41:77–85

    Article  CAS  Google Scholar 

  28. Barfod R, Mogensen M, Klemenso T, Hagen A, Liu YL, Hendriksen PV (2007) J Electrochem Soc 154(4):B371–B378

    Article  CAS  Google Scholar 

  29. Primdahl S, Mogensen M (1998) J Electrochem Soc 145(7):2431–2438

    Article  CAS  Google Scholar 

  30. Primdahl S, Mogensen M (1999) J Electrochem Soc 146(8):2827–2833

    Article  CAS  Google Scholar 

  31. Jørgensen MJ, Mogensen M (2001) J Electrochem Soc 148(5):A433–A442

    Article  Google Scholar 

  32. Primdahl S (1999) Risø National Laboratory. DTU, Roskilde, Denmark

    Google Scholar 

  33. Schefold J, Brisse A, Tietz F (2012) J Electrochem Soc 159:A137–A144

    Article  CAS  Google Scholar 

  34. Nechache A, Mansuy A, Petitjean M, Mougin J, Mauvy F, Boukamp BA, Cassir M, Ringuedé A (2016) Electrochim Acta 210:596–605

    Article  CAS  Google Scholar 

  35. Leonide A, Sonn V, Weber A, Ivers-Tiffée E (2008) J Electrochem Soc 155(1):B36–B41

    Article  CAS  Google Scholar 

  36. Kournoutis VC, Tietz F, Bebelis S (2009) Fuel Cells 09(6):852–860

    Article  CAS  Google Scholar 

  37. Ivers-Tiffée E, Weber A (2017) J Ceram Soc Japan 125(4):193–201

    Article  CAS  Google Scholar 

  38. Tietz F, Sebold D, Brisse A, Schefold J (2013) J Power Sources 223:129–135

    Article  CAS  Google Scholar 

  39. Schefold J, Brisse A, Poepke H (2017) Int J Hydrog Energy 42(19):13415–13426

    Article  CAS  Google Scholar 

  40. Laguna-Bercero MA (2012) J Power Sources 203:4–16

    Article  CAS  Google Scholar 

  41. Moçoteguy P, Brisse A (2013) Int J Hydrog Energy 38(36):15887–15902

    Article  CAS  Google Scholar 

  42. Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) Chem Rev 114(21):10697–10734

    Article  CAS  PubMed  Google Scholar 

  43. Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves CR, Mogensen MB (2016) Nat Energy 1:1–13

    Article  CAS  Google Scholar 

  44. Wang Y, Liu T, Lei L, Chen F (2017) J Power Sources 344:119–127

    Article  CAS  Google Scholar 

  45. Keane M, Fan H, Han M, Singh P (2014) Int J Hydrog Energy 39(33):18718–18726

    Article  CAS  Google Scholar 

  46. Zhang L, Zhu X, Cao Z, Wang Z, Li W, Zhu L, Li P, Huang X, Lü Z (2017) Electrochim Acta 232:542–549

    Article  CAS  Google Scholar 

  47. Hauch A, Brodersen K, Chen M, Mogensen MB (2016) Solid State Ionics 293:27–36

    Article  CAS  Google Scholar 

  48. Lim CK, Liu Q, Zhou J, Sun Q, Chan SH (2017) J Power Sources 342:79–87

    Article  CAS  Google Scholar 

  49. Lee SJ, Jung CY, Yi SC (2017) Electrochim Acta 242:86–89

    Article  CAS  Google Scholar 

  50. Boulfrad S, Nechache A, Cassidy M, Traversa E, Irvine JTS (2015) ECS Trans 68(1):2011–2018

    Article  CAS  Google Scholar 

  51. Schouler EJL, Kleitz M, Forest E, Fernandez E, Fabry P (1981) Solid State Ionics 5:559–562

    Article  CAS  Google Scholar 

  52. Schefold J, Brisse A, Zahid M (2009) J Electrochem Soc 156(8):B897–B904

    Article  CAS  Google Scholar 

  53. Mansuy A (2012) PhD Thesis, Université Bordeaux 1, Bordeaux

Download references

Acknowledgements

Dr. Nechache would like to warmly acknowledge Dr. Guillaume Izzet for the very helpful discussions.

Funding

This work is supported by the French Research National Agency (ANR) through Hydrogène et piles à combustible program (project FIDELHYO no. ANR-09-HPAC-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aziz Nechache or Armelle Ringuedé.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michel Cassir and Armelle Ringuedé are ISE members

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechache, A., Boukamp, B.A., Cassir, M. et al. Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis. J Solid State Electrochem 23, 871–881 (2019). https://doi.org/10.1007/s10008-018-04184-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04184-3

Keywords

Navigation