Skip to main content
Log in

The effects of the size and content of BaTiO3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For all-solid-state lithium-ion batteries, several disadvantages such as low ionic conductivity and poor interfacial stability have been concerned. According to previous studies, BaTiO3 nanoparticles can improve the electrochemical properties of PEO-based solid polymer electrolytes (SPEs). This study elucidates the effects of different sizes and contents of BaTiO3 fillers on SPEs. The BaTiO3 nanoparticles with average size of 5 nm, 100 nm, and 500 nm and content from 4 to 20 wt% were incorporated into SPEs by solution casting method. For the SPE with 8 wt% 5 nm BaTiO3, it possesses the highest ionic conductivity of 2.2 × 10−5 S cm−1 at 25 °C and 1.9 × 10−3 S cm−1 at 80 °C. In the LiFePO4/SPE with 8 wt% 5 nm BaTiO3/Li cell, it indicates a high initial discharge specific capacity of 140.7 mAh g−1 at 0.1 °C rate and the specific capacity remains 97.8% after 50 cycles at 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  2. Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964

    Article  CAS  Google Scholar 

  3. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan TN, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12(5):452–457

    Article  CAS  PubMed  Google Scholar 

  4. Soo PP, Huang B, Jang YI, Chiang Y, Sadoway DR, Mayes AM (1999) Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J Electrochem Soc 146(1):32–37

    Article  CAS  Google Scholar 

  5. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  CAS  PubMed  Google Scholar 

  6. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540

    Article  CAS  PubMed  Google Scholar 

  7. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770

    Article  CAS  Google Scholar 

  8. Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162(1):685–689

    Article  CAS  Google Scholar 

  9. Macglashan GS, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 398(6730):792–794

    Article  CAS  Google Scholar 

  10. Yang LY, Wei DX, Xu M, Yao YF, Chen Q (2014) Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design. Angew Chem 126(14):3705–3709

    Article  Google Scholar 

  11. Allcock HR, Kuharcik SE, Reed CS, Napierala ME (1996) Synthesis of polyphosphazenes with ethyleneoxy-containing side groups: new solid electrolyte materials. Macromolecules 29(10):3384–3389

    Article  CAS  Google Scholar 

  12. Wieczorek W, Such K, Wyciślik H, Płocharski J (1989) Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives. Solid State Ionics 36:55–257

    Article  Google Scholar 

  13. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458

    Article  CAS  Google Scholar 

  14. Fan L, Nan CW, Zhao S (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164(1-2):81–86

    Article  CAS  Google Scholar 

  15. Damen L, Hassoun J, Mastragostino M, Scrosati B (2010) Solid-state, rechargeable Li/LiFePO4, polymer battery for electric vehicle application. J Power Sources 195(19):6902–6904

    Article  CAS  Google Scholar 

  16. Fan L, Dang Z, Wei G, Nan CW, Li M (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4, electrolytes. Mater Sci Eng B 99:340–343

    Article  CAS  Google Scholar 

  17. Sun HY, Sohn HJ, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced lithium-ion transport in PEG-based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146(5):1672–1676

    Article  CAS  Google Scholar 

  18. Li Q, Imanishi N, Takeda Y, Hirano A, Yamamoto O (2002) PEO-based composite lithium polymer electrolyte, PEO-BaTiO3-Li (C2F5SO2)2N. Ionics 8(1-2):79–84

    Article  CAS  Google Scholar 

  19. Hao Y, Wang X, Zhang H, Li L (2013) Sol–gel based synthesis of ultrafine tetragonal BaTiO3. J Sol-Gel Sci Technol 67:82–187

    Article  CAS  Google Scholar 

  20. Ji J, Li B, Zhong WH (2010) Simultaneously enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochim Acta 55(28):9075–9082

    Article  CAS  Google Scholar 

  21. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources 146(1-2):397–401

    Article  CAS  Google Scholar 

  22. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16(2):161–170

    Article  CAS  Google Scholar 

  23. Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96(2):406–410

    Article  CAS  Google Scholar 

  24. Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156

    Article  CAS  PubMed  Google Scholar 

  25. Chan CK, Yang T, Weller JM (2017) Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim Acta 253:268–280

    Article  CAS  Google Scholar 

  26. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46(16):2457–2461

    Article  CAS  Google Scholar 

  27. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268

    Article  CAS  Google Scholar 

  28. Wieczorek W, Siekierski M (1994) A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory. J Appl Phys 76(4):2220–2226

    Article  CAS  Google Scholar 

  29. Li Z, Su G, Gao D, Wang X, Li X (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49(26):4633–4639

    Article  CAS  Google Scholar 

  30. Zhou J, Fedkiw PS (2004) Ionic conductivity of composite electrolytes based on oligo (ethylene oxide) and fumed oxides. Solid State Ionics 166(3-4):275–293

    Article  CAS  Google Scholar 

  31. Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn HJ (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem Soc 147(7):2462–2467

    Article  CAS  Google Scholar 

  32. Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88(2):169–191

    Article  CAS  Google Scholar 

  33. Kerr JB, Han YB, Liu G, Reader C, Xie J (2004) Interfacial behavior of polymer electrolytes. Electrochim Acta 50(2-3):235–242

    Article  CAS  Google Scholar 

  34. Kumar B, Scanlon L, Marsh R, Mason R, Higgins R, Baldwin R (2001) Structural evolution and conductivity of PEO: LiBF4–MgO composite electrolytes. Electrochim Acta 46(10-11):1515–1521

    Article  CAS  Google Scholar 

  35. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics 156(3-4):393–399

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No. 51672148, 51,272,123), Ministry of Sciences and Technology of China through National Basic Research Program of China (973 Program 2015CB654604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Feng, W. et al. The effects of the size and content of BaTiO3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries. J Solid State Electrochem 23, 749–758 (2019). https://doi.org/10.1007/s10008-018-04175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-04175-4

Keywords

Navigation