On the effect of the carbonaceous substrate in the nucleation of Sn nanoparticles for Li-ion anodes: experiments and first principles calculations

  • Sacha Smrekar
  • Martin E. Zoloff Michoff
  • Jorge E. Thomas
  • Cecilia A. Calderón
  • Lucas M. Farigliano
  • Arnaldo Visintin
  • Ezequiel P. M. Leiva
  • Daniel E. Barraco
Original Paper
  • 37 Downloads

Abstract

The nucleation of Sn nanoparticles by chemical reduction was studied using three different carbonaceous substrates, to obtain Sn/C composites. When used as active materials in anodes for lithium-ion batteries, these composites displayed higher capacities than commercially used graphite, and showed a good cyclability. The differences in morphology, capacity, cyclability, and diffusion between the resulting materials are highlighted. The resulting materials were characterized by charge-discharge cycling, voltammetry, EIS, SEM, and TEM microscopy. It was found that the substrate has a determinant effect on the deposition of Sn. This effect is interpreted in terms of the relative adsorption energies of a single Sn atom obtained from DFT calculations.

Graphical abstract

Keywords

Li-ion batteries Sn Carbon-based materials DFT 

Notes

Acknowledgments

This work was supported by PIO Conicet-YPF 3855/15, Y-TEC, Agencia Nacional de Promoción Científica, Program BID-Foncyt (PICT-2012-2324, PICT-2015-1605) Argentina, PID Conicet-11220110100992, PID Conicet-11220150100624, CONICET PUE “Desarrollo de baterías de litio” and SeCyT, from the National University of Cordoba. This work used computational resources from CCAD—Universidad Nacional de Córdoba (http://ccad.unc.edu.ar/), in particular the Mendieta Cluster, which is part of SNCAD—MinCyT, República Argentina.

Supplementary material

10008_2017_3859_MOESM1_ESM.pdf (282 kb)
ESM 1 (PDF 282 kb)

References

  1. 1.
    Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19(17):2336–2340.  https://doi.org/10.1002/adma.200700748CrossRefGoogle Scholar
  2. 2.
    Chen JS, Archer LA, Lou XW (2011) SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J Mater Chem 21(27):9912–9924.  https://doi.org/10.1039/c0jm04163gCrossRefGoogle Scholar
  3. 3.
    Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24Google Scholar
  4. 4.
    Wang Y, Lee JY, Deivaraj TC (2004) Tin nanoparticle loaded graphite anodes for Li-ion battery applications. J Electrochem Soc 151(11):A1804–A1809.  https://doi.org/10.1149/1.1799491CrossRefGoogle Scholar
  5. 5.
    Trifonova A, Wachtler M, Wagner MR et al (2004) Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb. Solid State Ionics 168(1-2):51–59.  https://doi.org/10.1016/j.ssi.2004.01.027CrossRefGoogle Scholar
  6. 6.
    Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11(10):1849–1852.  https://doi.org/10.1016/j.elecom.2009.07.035CrossRefGoogle Scholar
  7. 7.
    Kim I-T, Lee J, An J-C et al (2016) Capacity improvement of tin-deposited on carbon-coated graphite anode for rechargeable lithium ion batteries. Int J Electrochem Sci 11:5807–5818CrossRefGoogle Scholar
  8. 8.
    Chee S-S, Lee J-H (2012) Reduction synthesis of tin nanoparticles using various precursors and melting behavior. Electron Mater Lett 8(6):587–593.  https://doi.org/10.1007/s13391-012-2086-yCrossRefGoogle Scholar
  9. 9.
    Hsiao L-Y, Duh J-G (2006) Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5 Ag-0.5 Cu nanoparticles by a chemical reduction method. J Electron Mater 35(9):1755–1760.  https://doi.org/10.1007/s11664-006-0230-xCrossRefGoogle Scholar
  10. 10.
    Egashira M, Takatsuji H, Okada S, Yamaki J (2002) Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. J Power Sources 107(1):56–60.  https://doi.org/10.1016/S0378-7753(01)00980-6CrossRefGoogle Scholar
  11. 11.
    Yu P, Popov BN, Ritter JA, White RE (1999) Determination of the lithium ion diffusion coefficient in graphite. J Electrochem Soc 146(1):8–14.  https://doi.org/10.1149/1.1391556CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18(5):645–649.  https://doi.org/10.1002/adma.200501883CrossRefGoogle Scholar
  13. 13.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502.  https://doi.org/10.1088/0953-8984/21/39/395502CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868.  https://doi.org/10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  15. 15.
    Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748.  https://doi.org/10.1039/B917975ECrossRefGoogle Scholar
  16. 16.
    Shin H-J, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992.  https://doi.org/10.1002/adfm.200900167CrossRefGoogle Scholar
  17. 17.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192.  https://doi.org/10.1103/PhysRevB.13.5188CrossRefGoogle Scholar
  18. 18.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19.  https://doi.org/10.1006/jcph.1995.1039CrossRefGoogle Scholar
  19. 19.
    Chenoweth K, van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053.  https://doi.org/10.1021/jp709896wCrossRefGoogle Scholar
  20. 20.
    Marks NA, Cooper NC, McKenzie DR, McCulloch DG, Bath P, Russo SP (2002) Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon. Phys Rev B 65(7):75411.  https://doi.org/10.1103/PhysRevB.65.075411CrossRefGoogle Scholar
  21. 21.
    Han J, Gao W, Zhu J, Meng S, Zheng W (2007) Density-functional theory study of the microstructure, electronic structure, and optical properties of amorphous carbon. Phys Rev B 75(15):155418.  https://doi.org/10.1103/PhysRevB.75.155418CrossRefGoogle Scholar
  22. 22.
    Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A Gen 173(2):259–271.  https://doi.org/10.1016/S0926-860X(98)00184-7CrossRefGoogle Scholar
  23. 23.
    Zheng H, Jiang K, Abe T, Ogumi Z (2006) Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 44(2):203–210.  https://doi.org/10.1016/j.carbon.2005.07.038CrossRefGoogle Scholar
  24. 24.
    Ahn D, Xiao X (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13(8):796–799.  https://doi.org/10.1016/j.elecom.2011.05.005CrossRefGoogle Scholar
  25. 25.
    DYW Y, Fietzek C, Weydanz W et al (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253–A257CrossRefGoogle Scholar
  26. 26.
    Robledo CB, Thomas JE, Luque G, Leiva EPM, Cámara O, Barraco D, Visintin A (2014) An experimental and theoretical approach on the effect of presence of oxygen in milled graphite as lithium storage material. Electrochim Acta 140:160–167.  https://doi.org/10.1016/j.electacta.2014.05.117CrossRefGoogle Scholar
  27. 27.
    Kim I, Blomgren GE, Kumta PN (2004) Sn/C composite anodes for Li-ion batteries. Electrochem Solid-State Lett 7(3):A44–A48.  https://doi.org/10.1149/1.1643792CrossRefGoogle Scholar
  28. 28.
    Okada S (2008) Energetics of nanoscale graphene ribbons: edge geometries and electronic structures. Phys Rev B 77(4):41408.  https://doi.org/10.1103/PhysRevB.77.041408CrossRefGoogle Scholar
  29. 29.
    Sun M, Peng Y (2014) Study on structural, electronic and magnetic properties of Sn atom adsorbed on defective graphene by first-principle calculations. Appl Surf Sci 307:158–164.  https://doi.org/10.1016/j.apsusc.2014.04.005CrossRefGoogle Scholar
  30. 30.
    Lide DR (1999) CRC handbook of chemistry and physics, 80th edn. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Sacha Smrekar
    • 1
    • 4
  • Martin E. Zoloff Michoff
    • 2
  • Jorge E. Thomas
    • 3
  • Cecilia A. Calderón
    • 1
    • 4
  • Lucas M. Farigliano
    • 2
  • Arnaldo Visintin
    • 3
  • Ezequiel P. M. Leiva
    • 2
  • Daniel E. Barraco
    • 1
    • 4
  1. 1.Instituto de Física Enrique Gaviola (IFEG)CONICETCórdobaArgentina
  2. 2.INFIQC, CONICET and Departamento de Química Teórica y Computacional, Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias ExactasUniversidad Nacional de La Plata, CCT La Plata-CONICETLa PlataArgentina
  4. 4.Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations