Skip to main content
Log in

Co-precipitation synthesis of precursor with lactic acid acting as chelating agent and the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hydroxide precursor Ni0.5Co0.2Mn0.3(OH)2 was successfully prepared by co-precipitation using lactic acid as the environment-friendly chelating agent. And the thermodynamics model of hydroxide co-precipitation was proposed. The influence of chelating agent ion concentration on the structure and morphology of the precursors was discussed. The LiNi0.5Co0.2Mn0.3O2 cathode materials were obtained by sintering the mixture of as-prepared Ni0.5Co0.2Mn0.3(OH)2 precursor and Li2CO3. The structural, morphological, and electrochemical performances of LiNi0.5Co0.2Mn0.3O2 cathode materials were investigated by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Land battery tester. The results showed that the quasi-spherical LiNi0.5Co0.2Mn0.3O2 with the size of about 5 μm exhibited the excellent electrochemical performance when its Ni0.5Co0.2Mn0.3(OH)2 precursor was synthesized at the molar ratio of 1:1 between lactate ion and transition metal ion. The initial discharge capacity was 194.2 mAh g−1 at 0.1 C, and the discharge capacities of 108.6 and 95.7 mAh g−1 were obtained at 3 and 5 C, respectively. In addition, the capacity retention rate was 93.3% after 100 cycles at 0.2 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries: a look into the future. Energy Environ Sci 4(9):3287–3295. https://doi.org/10.1039/c1ee01388b

    Article  CAS  Google Scholar 

  2. Waag W, Fleischer C, Sauer DU (2014) Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J Power Sources 258:321–339. https://doi.org/10.1016/j.jpowsour.2014.02.064

    Article  CAS  Google Scholar 

  3. Zhang YD, Li Y, Xia XH, Wang XL, Gu CD, Tu JP (2015) High-energy cathode materials for Li-ion batteries: a review of recent developments. Sci China Tech Sci 58:1809–1828

    Article  CAS  Google Scholar 

  4. Fong R, Sacken UY, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013. https://doi.org/10.1149/1.2086855

    Article  CAS  Google Scholar 

  5. Belov D, Yang MH (2008) Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179(27-32):1816–1821. https://doi.org/10.1016/j.ssi.2008.04.031

    Article  CAS  Google Scholar 

  6. Kosova NV, Devyatkina ET (2007) Comparative study of LiCoO2 surface modified with different oxide. J Power Sources 174(2):959–964. https://doi.org/10.1016/j.jpowsour.2007.06.129

    Article  CAS  Google Scholar 

  7. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 7:642–643

    Article  Google Scholar 

  8. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119-121:171–174. https://doi.org/10.1016/S0378-7753(03)00173-3

    Article  CAS  Google Scholar 

  9. Wang HY, Tang AD, Huang KL (2011) Thermal behavior investigation of LiNi1/3Co1/3Mn1/3O2-based Li-ion battery under overcharged test. Chin J Chem 29(1):27–32. https://doi.org/10.1002/cjoc.201190056

    Article  Google Scholar 

  10. Lin CH, Zhang YZ, Chen L, Lei Y, Junker O, Guo Y, Yuan HY, Xiao D (2015) Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. J Power Sources 280:263–271. https://doi.org/10.1016/j.jpowsour.2015.01.084

    Article  CAS  Google Scholar 

  11. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x=1/3,0.5,0.6,0.7,0.8 and 0.85) cathode materials for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  12. He XM, Li JJ, Cai Y, Jiang CY, Wan CR (2006) Preparation of spherical spinel LiMn2O4 cathode material for Li-ion batteries. Mater Chem Phys 95(1):105–108. https://doi.org/10.1016/j.matchemphys.2005.06.006

    Article  CAS  Google Scholar 

  13. Zhang XY, Mauger A, Lu Q, Groult H, Perrigaud L, Gendron F, Julien CM (2010) Synthesis and characterization of LiNi1/3Mn1/3Co1/3O2 by wet-chemical method. Electrochim Acta 55(22):6440–6449. https://doi.org/10.1016/j.electacta.2010.06.040

    Article  CAS  Google Scholar 

  14. Zhao T, Chen S, Li L, Zhang X, Chen R, Belharouak I, Wu F, Amine K (2013) Synthesis, characterization, and electrochemistry of cathode materials Li Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J Power Sources 228:206–213. https://doi.org/10.1016/j.jpowsour.2012.11.099

    Article  CAS  Google Scholar 

  15. Kong JZ, Zhou F, Wang CB, Yang XY, Zhai HF, Li H, Li JX (2013) Effect of Li source and calcinations temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials. J Alloys Compd 554:221–226. https://doi.org/10.1016/j.jallcom.2012.11.090

    Article  CAS  Google Scholar 

  16. Kong JZ, Yang XY, Zhai HF, Ren C, Li H, Li JX, Tang Z, Zhou F (2013) Synthesis and electrochemical properties of Li-excess Li1+x[Ni0.5Co0.2Mn0.3]O2 cathode materials using ammonia-free chelating agent. J Alloys Compd 580:491–496. https://doi.org/10.1016/j.jallcom.2013.06.149

    Article  CAS  Google Scholar 

  17. Wang CL, Zhou F, Ren C, Wang YF, Kong JZ, Jiang YX, Yan GZ, Li JX (2015) Influences of carbonate co-precipitation temperature and stirring time on the microstructure and electrochemical properties of Li1.2[Mn0.52Ni0.2Co0.08]O2 positive electrode for lithium ion battery. Solid State Ionics 281:96–104. https://doi.org/10.1016/j.ssi.2015.09.016

    Article  CAS  Google Scholar 

  18. Dean JA (1985) Lange’s handbook of chemistry, 13th edn. McGraw-Hill, New York

    Google Scholar 

  19. Kong JZ, Zhai HF, Ren C, Tai GA, Yang XY, Zhou F, Li H, Li JX, Tang Z (2014) High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent. J Solid State Electrochem 18(1):181–188. https://doi.org/10.1007/s10008-013-2240-y

    Article  Google Scholar 

  20. Dean JA (1998) Lange’s handbook of chemistry, 15th edn. McGraw-Hill, New York

  21. Ding YH, Zhang P, Gao DS (2008) Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd 456(1-2):344–347. https://doi.org/10.1016/j.jallcom.2007.02.074

    Article  CAS  Google Scholar 

  22. Lee MH, Kang YJ, Myung ST, Sun YK (2004) Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim Acta 50(4):939–948. https://doi.org/10.1016/j.electacta.2004.07.038

    Article  CAS  Google Scholar 

  23. Zhang S (2007) Characterization of high tap density Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via hydroxide co-precipitation. Electrochim Acta 52(25):7337–7342. https://doi.org/10.1016/j.electacta.2007.06.015

    Article  CAS  Google Scholar 

  24. Hu CY, Guo J, Du Y, Xu HH, He YH (2011) Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries. Trans Nonferrous Met Soc China 21:114–120

    Article  CAS  Google Scholar 

  25. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method. Powder Technol 198(3):373–380. https://doi.org/10.1016/j.powtec.2009.12.002

    Article  CAS  Google Scholar 

  26. Shi SJ, Lou ZR, Xia TF, Wang XL, Gu CD, Tu JP (2014) Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. J Power Sources 257:198–204. https://doi.org/10.1016/j.jpowsour.2014.02.011

    Article  CAS  Google Scholar 

  27. Yin K, Fang W, Zhong B, Guo X, Tang Y, Nie X (2012) The effects of precipitant agent on structure and performance of LiNi1/3Co1/3Mn1/3O2cathode material via a carbonate co-precipitation method. Electrochim Acta 85:99–103. https://doi.org/10.1016/j.electacta.2012.06.064

    Article  CAS  Google Scholar 

  28. Zhang B, Chen G, Xu P, Li CC (2008) Effect of equivalent and non-equivalent al substitutions on the structure and electrochemical properties of LiNi0.5Mn0.5O2. J Power Sources 176(1):325–331. https://doi.org/10.1016/j.jpowsour.2007.10.043

    Article  CAS  Google Scholar 

  29. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38(9):1159–1167. https://doi.org/10.1016/0013-4686(93)80046-3

    Article  CAS  Google Scholar 

  30. Cho J, Kim G, Lim HS (1999) Effect of preparation methods of LiNi1-xCoxO2 cathode materials on their chemical structure and electrode performance. J Electrochem Soc 146(10):3571–3576. https://doi.org/10.1149/1.1392516

    Article  CAS  Google Scholar 

  31. Whitfield PS, Niketic S, Davidson IJ (2005) Effects of synthesis on electrochemical, structural and physical properties of solution phases of Li2MnO3-LiNi1-xCoxO2. J Power Sources 146(1-2):617–621. https://doi.org/10.1016/j.jpowsour.2005.03.077

    Article  CAS  Google Scholar 

  32. Deng C, Liu L, Zhou W, Sun K, Sun D (2008) Effect of synthesis condition on the structure and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by hydroxide co-precipitation method. Electrochim Acta 53(5):2441–2447. https://doi.org/10.1016/j.electacta.2007.10.025

    Article  CAS  Google Scholar 

  33. Senthil Kumar P, Sakunthala A, Reddy MV, Shanmugam S, Prabu M (2016) Correlation between the structural, electrical and electrochemical performance of layered Li(Ni0.33Co0.33Mn0.33)O2 for lithium ion battery. J Solid State Electrochem 20(7):1865–1876. https://doi.org/10.1007/s10008-015-3029-y

    Article  Google Scholar 

  34. Zheng XD, Dong CC, Huang B, Lu M (2012) Effects of conductive carbon on the electrochemical performances of Li4Ti5O12/C composites. Int J Electrochem Sci 7:9869–9880

    CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Special Fund of the Scientific and Technological Achievements Transformation Project in Jiangsu Province (No.BA2013142), Jiangsu Province Natural Science Fund Project (No. BK20130800), Fundamental Research Funds for the Central Universities (No. NS2014054), Funding of Shanghai Academy of Spaceflight Technology (No. SAST201371), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Xu, L. & Kong, J. Co-precipitation synthesis of precursor with lactic acid acting as chelating agent and the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium-ion battery. J Solid State Electrochem 22, 943–952 (2018). https://doi.org/10.1007/s10008-017-3837-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3837-3

Keywords

Navigation