Journal of Solid State Electrochemistry

, Volume 22, Issue 3, pp 637–656 | Cite as

Electrochemical synthesis and properties of gold nanomaterials

  • I. Saldan
  • O. Dobrovetska
  • L. Sus
  • O. Makota
  • O. Pereviznyk
  • O. Kuntyi
  • O. Reshetnyak


Approximately two decades ago, gold catalyst opened up a new view of their properties when they are introduced in the form of nanomaterials, since at that time, many approaches to preparation and use of gold nanoparticles started to be used in many practical applications. Today, the research activity relating to gold nanomaterials is becoming systematic and goes further to make connections between their surface structure, chemical and physical properties, and possible applications. Since electrodeposition is one of the most controllable methods used to prepare nanoparticles, nanowires, and nanoclusters of gold, the present review gives preference on their electrochemical synthesis. The relationship between catalytic activity, size, morphology and stability of gold nanomaterials is discussed in detail. Based on the properties of the prepared gold nanocatalysts, their new applications in chemical, photochemical, and electrochemical reactions have been observed.


Gold Electrodeposition Surface morphology Size effect Nanotechnologies 



Dr. O. Makota acknowledges assistance in the online library received within the frame of DAAD scholarship (reference number 91574246).

Funding information

The authors thank for financial support obtained from the national project of the Ministry of Science and Education of Ukraine (project number ХФ-56Ф).


  1. 1.
    Schmid G (1992) Large clusters and colloids. Metals in the Embryonic State Chem Rev 92:1709–1727Google Scholar
  2. 2.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802CrossRefGoogle Scholar
  3. 3.
    Murray RW (2007) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720CrossRefGoogle Scholar
  4. 4.
    Santra AK, Goodman DW (2003) Oxide-supported metal clusters: models for heterogeneous catalysts. J Phys Condensed Matter 15:R31–R62CrossRefGoogle Scholar
  5. 5.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  6. 6.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catalys Today 36:153–166CrossRefGoogle Scholar
  7. 7.
    Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by AuNPs for the reduction of eosin. J Phys Chem B 105:9266–9272CrossRefGoogle Scholar
  8. 8.
    Cortie MB, Van der Lingen E (2002) Catalytic gold nano-particles. Mater Forum 26:1–14Google Scholar
  9. 9.
    Turner M, Golovko V, Vaughan O, Abdulkin P, Berenguer-Murcia A, Tikhov M, Johnson B, Lambert R (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983CrossRefGoogle Scholar
  10. 10.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J Catalys 240:22–234CrossRefGoogle Scholar
  11. 11.
    Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319–388CrossRefGoogle Scholar
  12. 12.
    Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A 222:427–437CrossRefGoogle Scholar
  13. 13.
    Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102–115CrossRefGoogle Scholar
  14. 14.
    Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Record 3:75–87CrossRefGoogle Scholar
  15. 15.
    Haruta M, Yamada N, Kobayahsi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRefGoogle Scholar
  16. 16.
    Aiken JD, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal 145:1–44CrossRefGoogle Scholar
  17. 17.
    Biswas PC, Nodasaka Y, Eyno M, Haruta M (1995) Electro-oxidation of CO and methanol on graphite-based platinum electrodes combined with oxide-supported ultrafine gold particles. J Electroanal Chem 381:167–177CrossRefGoogle Scholar
  18. 18.
    Aziz MA, Park S, Jon S, Yang H (2007) Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotubeand poly(ethylene glycol)–silane copolymer. Chem Commun 25:2610–2612CrossRefGoogle Scholar
  19. 19.
    Dai X, Compton RG (2006) Direct electrodeposition of AuNPs onto indium tin oxide film coated glass: application to the detection of arsenic(III). Anal Sci 22:567–570CrossRefGoogle Scholar
  20. 20.
    Kozlowska HA, Conway BE, Hamelin A, Stoicoviciu L (1987) Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane. J Electroanal Chem 228:429–453CrossRefGoogle Scholar
  21. 21.
    Trasatti S, Petrii OA (1991) Real surface area measurements in electrochemistry. Pure Appl Chem 63:711–734CrossRefGoogle Scholar
  22. 22.
    Sheridan E, Hjelm J, Forster RJ (2007) Electrodeposition of AuNPs on fluorine-doped tin oxide: control of particle density and size distribution. J Electroanal Chem 608:1–7CrossRefGoogle Scholar
  23. 23.
    Penner RM (2002) Mesoscopic metal particles and wires by electrodeposition. J Phys Chem B 106:3339–3353CrossRefGoogle Scholar
  24. 24.
    Liu H, Penner RM (2000) Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit. J Phys Chem B 104:9131–9139CrossRefGoogle Scholar
  25. 25.
    Aziz MA, Patra S, Yang H (2008) A facile method of achieving low surface coverage of au nanoparticles on an indium tin oxide electrode and its application to protein detection. Chem Commun 14:4607–4609CrossRefGoogle Scholar
  26. 26.
    Wang Y, Deng J, Di J, Tu Y (2009) Electrodeposition of large size AuNPs on indium tin oxide glass and application as refractive index sensor. Electrochem Commun 11:1034–1037CrossRefGoogle Scholar
  27. 27.
    Wang JY, Diao P, Zhang DF, Xiang M, Zhang Q (2009) Electrochemical sensing of CO by gold particles electrodeposited on indium tin oxide substrate. Electrochem Commun 11:1069–1072CrossRefGoogle Scholar
  28. 28.
    Kaminska I, Niedziolka-Jonsson J, Roguska A, Opallo M (2010) Electrodeposition of AuNPs at a solid|ionic liquid|aqueous electrolyte three-phase junction. Electrochem Commun 12:1742–1745CrossRefGoogle Scholar
  29. 29.
    Fang J, You H, Ding B, Song X (2007) Large-area and high-density gold nanoparticle arrays with sub-10 nm gaps. Electrochem Commun 9:2423–2427CrossRefGoogle Scholar
  30. 30.
    Gamero M, Alonso C (2010) Deposition of nanostructurated gold on n-doped silicon substrate by different electrochemical methods. J Appl Electrochem 40:175–190CrossRefGoogle Scholar
  31. 31.
    Osaka T, Kato M, Sato J, Yoshizawa K, Homma T, Okinaka Y, Yoshioka O (2001) Mechanism of sulfur inclusion in soft gold electrodeposited from the thiosulfate-sulfite bath. J Electrochem Soc 148:659–662CrossRefGoogle Scholar
  32. 32.
    Vogel YB, Darwish N, Kashi MB, Gooding JJ, Ciampi S (2017) Hydrogen evolution during the electrodeposition of gold nanoparticles at Si(100) photoelectrodes impairs the analysis of current-time transients. Electrochim Acta 247:200–206CrossRefGoogle Scholar
  33. 33.
    Martínez-Paredes G, Begoña González-García MB, Costa-García A (2010) Genosensor for detection of four pneumoniae bacteria using gold nanostructured screen-printed carbon electrodes as transducers. Sensor Actuator B 149:329–335CrossRefGoogle Scholar
  34. 34.
    Zhang H, Xu J, Chen H (2008) Shape-controlled gold nanoarchitectures: synthesis, superhydrophobicity and electrocatalytic properties. J Phys Chem C 112:13886–13892CrossRefGoogle Scholar
  35. 35.
    Guo ZR, Zhang Y, Huang L, Wang M, Wang J, Sun JF, Xu LN, Gu N (2007) One-step controlled synthesis of anisotropic gold nanostructures with aniline as the reductant in aqueous solution. J Colloid Interface Sci 309:518–523CrossRefGoogle Scholar
  36. 36.
    Moreau F, Bond GC, Taylor AO (2005) Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. J Catal 231:105–114CrossRefGoogle Scholar
  37. 37.
    Othman SH, El-Deab MS, Okajima T, Ohsaka T (2009) Novel procedure for the fabrication of gold nanostructures enriched in Au (110) facet orientation. Electrochem Commun 11:1273–1276CrossRefGoogle Scholar
  38. 38.
    Arihara K, Ariga T, Takashima N, Arihara K, Okajima T, Kitamura F, Tokuda K, Ohsaka T (2004) Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates. Phys Chem Chem Phys 5:3758–3761CrossRefGoogle Scholar
  39. 39.
    Zhou YG, Rees NV, Pillay J, Tshikhudo R, Vilakazi S, Compton RG (2012) Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem Commun 48:224–226CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Zheng X, Wu L, Zhi J, Xu M (2011) An easy method for manufacture of AuNPs on a glassy carbon surface. J Mater Sci 46:1139–1142CrossRefGoogle Scholar
  41. 41.
    Komsiyska L, Staikov G (2008) Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4]. Electrochim Acta 54:168–172CrossRefGoogle Scholar
  42. 42.
    Qu LT, Dai LM (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:10806–10807CrossRefGoogle Scholar
  43. 43.
    Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6:75–90CrossRefGoogle Scholar
  44. 44.
    Hung VWS, Kerman K (2011) Gold electrodeposition on carbon nanotubes for the enhanced electrochemical detection of homocysteine. Electrochem Commun 13:328–330CrossRefGoogle Scholar
  45. 45.
    Afraz A, Rafati AA, Najafi M (2014) Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C 44:58–68CrossRefGoogle Scholar
  46. 46.
    Mastalir A, Kiraly Z, Patzko A, Dekany I, L’Argentiere P (2008) Synthesis and catalytic application of Pd nanoparticles in graphite oxide. Carbon 46:1631–1637CrossRefGoogle Scholar
  47. 47.
    Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266CrossRefGoogle Scholar
  48. 48.
    Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797CrossRefGoogle Scholar
  49. 49.
    Varns R, Strange P (2008) Stability of gold atoms and dimers adsorbed on grapheme. J Phys Condens Matter 20:225005CrossRefGoogle Scholar
  50. 50.
    Hong W, Bai H, Xu Y, Yao Z, Gu Z, Shi G (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114:1822–1826CrossRefGoogle Scholar
  51. 51.
    Zhu L, Liu Y, Yang P, Liu B (2015) Label-free aptasensor based on electrodeposition of gold nanoparticles on graphene and its application in the quantification of adenosine triphosphate. Electrochim Acta 172:88–93CrossRefGoogle Scholar
  52. 52.
    Farquhara AK, Brooksbya PA, Dryfe RAW, Downard AJ (2017) Controlled electrodeposition of gold nanoparticles onto copper-supported few-layer graphene in non-aqueous conditions. Electrochim Acta 237:54–60CrossRefGoogle Scholar
  53. 53.
    Yiwei X, Wen Z, Jiyong S, Xiaobo Z, Yanxiao L, Tahir HE, Xiaowei H, Zhihua L, Xiaodong Z, Xuetao H (2017) Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem 237:423–430CrossRefGoogle Scholar
  54. 54.
    Fujigaya T, Kim CR, Hamasaki Y, Nakashima N (2016) Growth and deposition of Au nanoclusters on polymer-wrapped graphene and their oxygen reduction activity. Sci Rep 6:21314CrossRefGoogle Scholar
  55. 55.
    Qiu C, Zhou H, Cao B, Sun L, Yu T (2013) Raman spectroscopy of morphology-controlled deposition of Au on graphene. Carbon 59:487–494CrossRefGoogle Scholar
  56. 56.
    Lee J, Shim S, Kim B, Shin HS (2011) Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of AuNPs. Chem Eur J 17:2381–2387CrossRefGoogle Scholar
  57. 57.
    Zhou HQ, Qiu CY, Liu Z, Yang HC, Hu LJ, Liu J, Yang H, Gu C, Sun L (2010) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132:944–946CrossRefGoogle Scholar
  58. 58.
    Wayman CM, Darby TP (1975) Nucleation and growth of gold films on graphite: II. The effect of substrate temperature. J Cryst Growth 28:53–67CrossRefGoogle Scholar
  59. 59.
    Chu L, Han L, Zhang X (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–694CrossRefGoogle Scholar
  60. 60.
    Wei L, Kai D, Lin Z, Jiang X, Chao Z, Yunwang Z, Lan Z, Qiang Y (2013) Electrochemical behavior of gold (I) in dimethylsulfoxide. Electrochim Acta 95:179–184CrossRefGoogle Scholar
  61. 61.
    Abedin SZ, Moustafa EM, Hempelmann R, Natter H, Endres F (2005) Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid. Electrochem Commun 7:1111–1116CrossRefGoogle Scholar
  62. 62.
    Karra S, Wooten M, Griffith W, Gorski W (2016) Morphology of AuNPs and electrocatalysis of glucose oxidation. Electrochim Acta 218:8–14CrossRefGoogle Scholar
  63. 63.
    Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefGoogle Scholar
  64. 64.
    Velev OD, Kaler EW (2000) Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv Mater 12:531–534CrossRefGoogle Scholar
  65. 65.
    Cherevko S, Chung CH (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13:16–19CrossRefGoogle Scholar
  66. 66.
    Li W, Su B (2012) Reductive electron transfer dynamics in gold nanocluster films contacted with aqueous electrolytes. Electrochem Commun 22:8–11CrossRefGoogle Scholar
  67. 67.
    Xiao X, Ulstrup J, Li H, Wang M, Zhang J, Si P (2014) Nanoporous gold assembly of glucose oxidase for electrochemical biosensing. Electrochim Acta 130:559–567CrossRefGoogle Scholar
  68. 68.
    Yang XN, Huang XB, Hang RQ, Zhang XY, Qin L, Tang B (2016) Improved catalytic performance of porcine pancreas lipase immobilized onto nanoporous gold via covalent coupling. J Mater Sci 51:6428–6435CrossRefGoogle Scholar
  69. 69.
    Yu Y, Chang S, Lee C, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664CrossRefGoogle Scholar
  70. 70.
    Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287CrossRefGoogle Scholar
  71. 71.
    Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  72. 72.
    Wirtz M, Martin CR (2003) Template-fabricated gold nanowires and nanotubes. Adv Mater 15:455–458CrossRefGoogle Scholar
  73. 73.
    Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82CrossRefGoogle Scholar
  74. 74.
    Kim YJ, Song JH (2006) Practical synthesis of Au nanowires via a simple photochemical route. Bull Kor Chem Soc 27:633–634CrossRefGoogle Scholar
  75. 75.
    Wang C, Hu Y, Lieber CM, Sun S (2008) Ultrathin Au nanowires and their transport properties. J Am Chem Soc 130:8902–8903CrossRefGoogle Scholar
  76. 76.
    Li B, Jiang B, Tang H, Lin Z (2015) Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution. Chem Sci 6:6349–6354CrossRefGoogle Scholar
  77. 77.
    Chrétien S, Buratto SK, Metiu H (2007) Catalysis by very small Au clusters. Curr Opin Solid State Mater Sci 11:62–75CrossRefGoogle Scholar
  78. 78.
    Cheng Y, Schiffrin DJ (1996) Electrodeposition of metallic gold clusters at the water/1,2-dichloroethane interface. J Chem Soc Faraday Trans 92:3865–3871CrossRefGoogle Scholar
  79. 79.
    Girault HH, Schiffrin DJ, in Electroanalytical Chemistry (1989) ed. Bard AJ, Marcel Dekker, New York 15:1Google Scholar
  80. 80.
    Cheng Y, Schiffrin DJ (1991) Electron transfer between bis(pyridine)meso-tetraphenylporphyrinato iron(II) and ruthenium(III) and the hexacyanof errate couple at the 1,2-dichlor. J Electroanal Chem 314:153–163CrossRefGoogle Scholar
  81. 81.
    Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093CrossRefGoogle Scholar
  82. 82.
    Jin R, Egusa S, Scherer NF (2004) Thermally-induced formation of atomic Au clusters and conversion into nanocubes. J Am Chem Soc 126:9900–9901CrossRefGoogle Scholar
  83. 83.
    Rodrıguez-Sanchez ML, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688CrossRefGoogle Scholar
  84. 84.
    Rodrıguez-Vazquez MJ, Blanco MC, Lourido R, Vazquez-Vazquez C, Pastor E, Planes GA, Rivas J, Lopez-Quintela MA (2008) Synthesis of atomic gold clusters with strong electrocatalytic activities. Langmuir 24:12690–12694CrossRefGoogle Scholar
  85. 85.
    Gonzalez BS, Rodrıguez MJ, Blanco C, Rivas J, Lopez-Quintela MA, Martinho JMG (2010) One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett 10:4217–4221CrossRefGoogle Scholar
  86. 86.
    Ferrnandez-Seivane L, Ferrer J (2007) Magnetic anisotropies of late transition metal atomic clusters. Phys Rev Lett 99:183401CrossRefGoogle Scholar
  87. 87.
    Gonzalez S (2008) Synthesis and properties of electrochemical synthesized gold atomic clusters. Master’s thesis, Universidad de Santiago de Compostela, Santiago de Compostela, SpainGoogle Scholar
  88. 88.
    Hugentobler M, Bonanni S, Sautier A, Harbich W (2011) Morphology and stability of Au nanoclusters in HOPG nanopits of well-defined depth. Eur Phys J D 63:215–220CrossRefGoogle Scholar
  89. 89.
    Botana J, Pereiro M, Baldomir D, Arias JE (2009) Bidimensionality of 8-atom clusters of Au: first principles study and comparison with Ag clusters. Theor Chem Account 122:297–304CrossRefGoogle Scholar
  90. 90.
    Dong Y, Springborg M, Warnke I (2011) Structural and thermodynamic properties of Au2–20 clusters. Theor Chem Account 130:1001–1008CrossRefGoogle Scholar
  91. 91.
    Johansson MP, Warnke I, Le A, Furche F (2014) At what size do neutral gold clusters turn three-dimensional? J Phys Chem C 118:29370–29377CrossRefGoogle Scholar
  92. 92.
    Johansson MP, Lechtken A, Schooss D, Kappes MM, Furche F (2008) 2D−3D transition of gold cluster anions resolved. Phys Rev A 77:053202CrossRefGoogle Scholar
  93. 93.
    Frenke AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41:8163–8178CrossRefGoogle Scholar
  94. 94.
    Bordiga S, Groppo E, Agostini G, Van Bokhoven JA, Lamberti C (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113:1736–1850CrossRefGoogle Scholar
  95. 95.
    Zhang P (2014) X-ray spectroscopy of gold−thiolate nanoclusters. J Phys Chem C 118:25291–25299CrossRefGoogle Scholar
  96. 96.
    Li J, Lin XQ (2007) Electrodeposition of gold nanocluster s on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222–230CrossRefGoogle Scholar
  97. 97.
    Liu A, Zhu J, Han J, Wu H, Jiang C (2008) Fabrication and characterization of AuNCs on phosphorus incorporated tetrahedral amorphous carbon electrode. Electrochem Commun 10:827–830CrossRefGoogle Scholar
  98. 98.
    Huang SX, Ma HY, Zhang XK, Yong FF, Feng XL, Pan W, Wang XN, Wang Y, Chen SH (2005) Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization. J Phys Chem B 109:19823–19830CrossRefGoogle Scholar
  99. 99.
    Hill AC, Patterson RE, Sefton JP, Columbia MR (1999) Effect of Pb(II) on the morphology of platinum electrodeposited on highly oriented pyrolytic graphite. Langmuir 15:4005–4010CrossRefGoogle Scholar
  100. 100.
    Li W, Wang D, Sun Q, Su B (2011) Ion transfer coupled discrete charging of immobilised AuNCs in polar organic solvents. Electrochem Commun 13:875–878CrossRefGoogle Scholar
  101. 101.
    Anandhakumar S, Dhanalakshmi K, Mathiyarasu J (2014) Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem Commun 38:15–18CrossRefGoogle Scholar
  102. 102.
    Kashchiev D (2000) Nucleation basic theory with applications. Butterworth-Heinemann, OxfordGoogle Scholar
  103. 103.
    Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. Weinheim, VCHCrossRefGoogle Scholar
  104. 104.
    Yevtushenko O, Natter H, Hempelmann R (2007) Influence of bath composition and deposition parameters on nanostructure and thermal stability of gold. J Solid State Electrochem 11:138–143CrossRefGoogle Scholar
  105. 105.
    Chen Y, Zeng C, Kauffman DR, Jin R (2015) Tuning the magic size of atomically precise AuNCs via isomeric methylbenzenethiols. Nano Lett 15:3603–3609CrossRefGoogle Scholar
  106. 106.
    Aziz MA, Kim J, Oyama M (2014) Preparation of monodispersed carboxylate-functionalized gold nanoparticles using pamoic acid as a reducing and capping reagent. Gold Bull 47:127–132CrossRefGoogle Scholar
  107. 107.
    Aziz MA, Kim JP, Shaikh MN, Oyama M, Bakare FO, Yamani ZH (2015) Size-controlled preparation of fluorescent AuNPs using pamoic acid. Gold Bull 48:85–92CrossRefGoogle Scholar
  108. 108.
    Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336CrossRefGoogle Scholar
  109. 109.
    Wei A (2004) Plasmonic nanomaterials: enhanced optical properties from metal nanoparticles and their ensembles. In: Rotello V (ed) Nanoparticles: building blocks for nanotechnology. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  110. 110.
    Templeton AC, Pietron JJ, Murray RW, Mulvaney P (2000) Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B 104:564–570CrossRefGoogle Scholar
  111. 111.
    Deng J, Song Y, Wang Y, Di J (2010) Label-free optical biosensor based on localized surface plasmon resonance of twin-linked gold nanoparticles electrodeposited on ITO glass. Biosens Bioelectron 26:615–619CrossRefGoogle Scholar
  112. 112.
    Endo HT, Takizawa Y, Imai Y, Yanagida T (2011) Study of electrical field distribution of gold-capped nanoparticle for excitation of localized surface plasmon resonance. Appl Surf Sci 257:2560–2566CrossRefGoogle Scholar
  113. 113.
    Wang W, Wang Y, Dai Z, Sun Y, Sun Y (2007) Nonlinear optical properties of periodic gold nanoparticle arrays. Appl Surf Sci 253:4673–4676CrossRefGoogle Scholar
  114. 114.
    D’Britto V, Sandeep CSS, Philip R, Prasad BLV (2009) Optical limiting properties of hydrophobic poly(etherimide) membranes embedded with isolated and aggregated gold nanostructures. Coll Surf A 352:79–83CrossRefGoogle Scholar
  115. 115.
    Aziz MA, Oyama M, Reshak AH, Gondek E, Armatys P, Shebl A, Kityk IV, Wojciechowski A, Otowski W (2012) Laser stimulated optical features of AuNPs attached on ITO substrate. Phys E 44:1182–1188CrossRefGoogle Scholar
  116. 116.
    Sun KQ, Luo SW, Xu N, Xu BQ (2008) Gold nano-size effect in Au/SiO2 for selective ethanol oxidation in aqueous solution. Catal Lett 124:238–242CrossRefGoogle Scholar
  117. 117.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  118. 118.
    Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291:222–229CrossRefGoogle Scholar
  119. 119.
    Tsunoyama H, Sakurai H, Tsukuda T (2006) Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem Phys Lett 429:528–532CrossRefGoogle Scholar
  120. 120.
    Billa S, Prati L, Rossi M (2002) Selective oxidation of D-glucose on gold catalyst. J Catal 206:242–247CrossRefGoogle Scholar
  121. 121.
    Demirel S, Lehnert K, Lucas M, Claus P (2007) Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts. Appl Catal B Environ 70:637–643CrossRefGoogle Scholar
  122. 122.
    Haider P, Baiker A (2007) Gold supported on Cu–Mg–Al-mixed oxides: strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J Catal 248:175–187CrossRefGoogle Scholar
  123. 123.
    Abad A, Concepcion P, Corma A, Garcia H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069CrossRefGoogle Scholar
  124. 124.
    Inasaki T, Kobayashi S (2009) Particle size effects of gold on the kinetics of the oxygen reduction at chemically prepared Au/C catalysts. Electrochim Acta 54:4893–4897CrossRefGoogle Scholar
  125. 125.
    Kadossov E, Burghaus U (2010) Adsorption dynamics of CO on silica supported gold clusters: cluster size effects in molecular beam scattering experiments. Catal Lett 134:228–232CrossRefGoogle Scholar
  126. 126.
    Padayachee D, Golovko V, Ingham B, Marshall AT (2014) Influence of particle size on the electrocatalytic oxidation of glycerol over carbon-supported gold nanoparticles. Electrochim Acta 120:398–407CrossRefGoogle Scholar
  127. 127.
    Ivanova OS, Zamborini FP (2010) Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. Anal Chem 82:5844–5850CrossRefGoogle Scholar
  128. 128.
    Masitas RA, Zamborini FP (2012) Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J Am Chem Soc 134:5014–5017CrossRefGoogle Scholar
  129. 129.
    Plieth WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J Phys Chem 86:3166–3170CrossRefGoogle Scholar
  130. 130.
    Haruta M (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:1–2CrossRefGoogle Scholar
  131. 131.
    Pyykko P (2004) Theoretical chemistry of gold. Angew Chem Int Ed Engl 43:4412–4456CrossRefGoogle Scholar
  132. 132.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  133. 133.
    Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, LondonCrossRefGoogle Scholar
  134. 134.
    Liua XY, Wang A, Zhang T, Mou CY (2013) Catalysis by gold: new insights into the support effect. Nano Today 8:403–416CrossRefGoogle Scholar
  135. 135.
    Rezende TS, Andrade GRS, Barreto LS, Costa NB, Gimenez IF, Almeida LE (2010) Facile preparation of catalytically active gold nanoparticles on a thiolated chitosan. Mat Lett 64:882–884CrossRefGoogle Scholar
  136. 136.
    Eremenko AM, Smirnova NP, Mukha IP, Yashan HR (2010) Silver and gold nanoparticles in silica matrices: synthesis, properties, and application. Theor Exp Chem 46:65–88CrossRefGoogle Scholar
  137. 137.
    Das M, Shim KH, An SSA, Yi DK (2011) Review on gold nanoparticles and their applications. Toxicol Environ Health Sci 3:193–205CrossRefGoogle Scholar
  138. 138.
    Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14:4757–4780CrossRefGoogle Scholar
  139. 139.
    Kang HJ, Patra S, Das J, Aziz A, Jo J, Yang H (2010) Effect of aging on the electrocatalytic activity of gold nanoparticles. Electrochem Commun 12:1245–1248CrossRefGoogle Scholar
  140. 140.
    Burke LD, O'Connell AM, O'Mullane AP (2003) The role of defects, or active states, in surface electrochemistry with particular reference to gold in neutral solution. J Appl Electrochem 33:1125–1135CrossRefGoogle Scholar
  141. 141.
    Das J, Patra S, Yang H (2008) Enhancement of the electrocatalytic activity of gold nanoparticles via NaBH4 treatment. Chem Commun 37:4451–4453CrossRefGoogle Scholar
  142. 142.
    Saldan I, Burtovyy R, Becker H, Ader V, Wöll C (2008) Ti-Ni alloys as MH electrodes in Ni-MH accumulators. Int J Hydrog Energy 33:7177–7184CrossRefGoogle Scholar
  143. 143.
    Saldan I, Frenzel J, Shekhah O, Chelmowski R, Birkner A, Wöll C (2009) Surface of Ti-Ni alloys after their preparation. J Alloy Comp 470:568–573CrossRefGoogle Scholar
  144. 144.
    Saldan I (2010) Primary estimation of metal hydride electrode performance. J Solid State Electr 14:1339–1350CrossRefGoogle Scholar
  145. 145.
    Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192CrossRefGoogle Scholar
  146. 146.
    Gopalan AI, Lee KP, Manesha KM, Santhosh P, Kim JH (2006) Gold nanoparticles dispersed into poly(aminothiophenol) as a novel electrocatalyst—fabrication of modified electrode and evaluation of electrocatalytic activities for dioxygen reduction. J Mol Catal A 256:335–345CrossRefGoogle Scholar
  147. 147.
    Etesami M, Mohamed N (2011) Catalytic application of gold nanoparticles electrodeposited by fast scan cyclic voltammetry to glycerol electrooxidation in alkaline electrolyte. Int J Electrochem Sci 6:4676–4689Google Scholar
  148. 148.
    Ahammad AJS, Choi YH, Koh K, Kim JH, Lee JJ, Lee M (2011) Electrochemical detection of cardiac biomarker troponin I at gold nanoparticle-modified ITO electrode by using open circuit potential. Int J Electrochem Sci 6:1906–1916Google Scholar
  149. 149.
    Guoa S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264CrossRefGoogle Scholar
  150. 150.
    Guo SJ, Wen D, Zhai YM, Dong SJ, Wang EK (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4:3959–3968CrossRefGoogle Scholar
  151. 151.
    Huang J, Wang D, Hou H, You T (2008) Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv Funct Mater 18:441–448CrossRefGoogle Scholar
  152. 152.
    Razzaq H, Qureshi R, Schiffrin DJ (2014) Enhanced rate of electron transfer across gold nanoparticle-anthraquinone hybrids. Electrochem Commun 39:9–11CrossRefGoogle Scholar
  153. 153.
    Schiffrin DJ (2017) Current topics in physical and nanoparticle electrochemistry. Cur Opin Electrochem.
  154. 154.
    Wei H, Li B, Li J, Dong S, Wang E (2008) DNAzyme-based colorimetric sensing of lead (Pb+2) using unmodified gold nanoparticle probes. Nanotechnology 19(5):095501CrossRefGoogle Scholar
  155. 155.
    Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47:3927–3931CrossRefGoogle Scholar
  156. 156.
    Wang H, Wang Y, Jin J, Yang R (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80:9021–9028CrossRefGoogle Scholar
  157. 157.
    Wei H, Li BL, Li J, Wang EK, Dong SJ (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun 43:3735–3737CrossRefGoogle Scholar
  158. 158.
    Lv ZZ, Wei H, Li BL, Wang EK (2009) Colorimetric recognition of the coralyne-poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system. Analyst 134:1647–1651CrossRefGoogle Scholar
  159. 159.
    Zhang J, Wang L, Pan D, Song S, Boey F, Zhang H, Fan C (2008) Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4:1196–1200CrossRefGoogle Scholar
  160. 160.
    Jiang Y, Zhao H, Lin Y, Zhu N, Ma Y, Mao L (2010) Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew Chem Int Ed 49:4800–4804CrossRefGoogle Scholar
  161. 161.
    Staszak-Jirkovský J, Ahlberg E, Panas I, Schiffrin DJ (2016) The bifurcation point of the oxygen reduction reaction on Au–Pd nanoalloys. Faraday Discuss 188:257–278CrossRefGoogle Scholar
  162. 162.
    Penon O, Marín MJ, Russell DA, Pérez-García L (2017) Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J Coll Interface Sci 496:100–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • I. Saldan
    • 1
  • O. Dobrovetska
    • 2
  • L. Sus
    • 2
  • O. Makota
    • 2
  • O. Pereviznyk
    • 1
  • O. Kuntyi
    • 2
  • O. Reshetnyak
    • 1
  1. 1.Department of Physical and Colloid ChemistryIvan Franko National University of LvivLvivUkraine
  2. 2.Institute of Chemistry and Chemical TechnologiesLviv Polytechnic National UniversityLvivUkraine

Personalised recommendations