Skip to main content
Log in

Electrochemical machining of tungsten carbide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical machining (ECM) is characterized amongst other things, by extremely high current densities and a high dissolution rate of material. Due to the extreme current densities under ECM conditions, tungsten carbide forms adherent, supersaturated, viscous films of polytungstates close to the interface. This film is permanently dissolved by electrolyte flow and is reproduced at the electrode surface. The dissolution proceeds in an active state up to 30 A cm−2. An additional layer is formed at higher current densities which means that there is a passive state and the presence of high-field oxide films with thicknesses around 10 nm. The complex interaction between current, field strength, and oxide thickness yields a constant resistance to the oxide film. The formation of an oxide film is also indicated by the onset of oxygen evolution which consumes about 20% of anodic charge. The interaction of ionic currents (oxide formation and dissolution) and electronic currents (oxygen evolution) is small due to completely different conduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bannard J (1977) Electrochemical machining. J Appl Electrochem 7(1):1–29. https://doi.org/10.1007/BF00615526

    Article  CAS  Google Scholar 

  2. Datta M (1993) Anodic dissolution of metals at high rates. IBM J Res Dev 37(2):207–226. https://doi.org/10.1147/rd.372.0207

    Article  CAS  Google Scholar 

  3. McGeough J (1974) Priciples of electrochemical machining. Chapman and Hall, London

    Google Scholar 

  4. Schneider M, Lohrengel MM (2017) Electrochemical machining. In: Breitkopf C, Swider-Lyons K (eds) Springer-Handbook of Electrochemical Energy. Springer, Dordrecht, pp 941–971

    Chapter  Google Scholar 

  5. Landolt D (1972) Flow channel cell apparatus for high rate electrolysis studies. Rev Sci Instrum 43(4):592–595. https://doi.org/10.1063/1.1685699

    Article  CAS  Google Scholar 

  6. Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, van Bossche BD, Deconinck J (2004) Electrochim Acta 49(17-18):2863–2870. https://doi.org/10.1016/j.electacta.2004.01.068

    Article  CAS  Google Scholar 

  7. Schneider M, Schroth S, Schubert N, Michaelis A (2012) In-situ investigation of the surface-topography during anodic dissolution of copper under near-ECM conditions. Mater Corros 63(2):96–104. https://doi.org/10.1002/maco.201005716

    Article  CAS  Google Scholar 

  8. Bockris JOM, Khan SUM (1993) Surface electrochemistry—a molecular level approach. Plenum Press, New York. https://doi.org/10.1007/978-1-4615-3040-4

    Book  Google Scholar 

  9. Rosenkranz C, Lohrengel MM, Schultze JW (2005) The surface structure during pulsed ECM of iron in NaNO3. Electrochim Acta 50(10):2009–2016. https://doi.org/10.1016/j.electacta.2004.09.010

    Article  CAS  Google Scholar 

  10. Glarum SH, Marshall JH (1985) J Electrochem Soc 132:2872–2885

    Article  CAS  Google Scholar 

  11. Matlosz M, Magaino S, Landolt D (1994) J Electrochem Soc 141:410–418

    Article  CAS  Google Scholar 

  12. Datta M, Mathieu HJ, Landolt D (1979) Anodic film studies on nickel under high rate transpassive dissolution conditions. Electrochim Acta 24(8):843–850. https://doi.org/10.1016/0013-4686(79)87007-3

    Article  CAS  Google Scholar 

  13. Datta M, Landolt D (1975) J Electrochem Soc 122:1466–1472

    Article  CAS  Google Scholar 

  14. Datta M, Mathieu HJ, Landolt D (1984) J Electrochem Soc 131:2484–2489

    Article  CAS  Google Scholar 

  15. Datta M, Landolt D (1980) On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—I. Chloride solutions. Electrochim Acta 25(10):1255–1262. https://doi.org/10.1016/0013-4686(80)87130-1

    Article  CAS  Google Scholar 

  16. Datta M, Landolt D (1980) On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—II. Chlorate and nitrate solutions. Electrochim Acta 25(10):1263–1271. https://doi.org/10.1016/0013-4686(80)87131-3

    Article  CAS  Google Scholar 

  17. Datta M, Landolt D (1981) Electrochemical machining under pulsed current conditions. Electrochim Acta 26(7):899–907. https://doi.org/10.1016/0013-4686(81)85053-0

    Article  CAS  Google Scholar 

  18. Lohrengel MM (2005) Pulsed electrochemical machining of iron in nano3: fundamentals and new aspects. Mater Manuf Process 20(1):1–9. https://doi.org/10.1081/AMP-200041591

    Article  CAS  Google Scholar 

  19. Moehring A (2004) Entwicklung einer elektrochemischen Durchflusszelle zur Untersuchung des Elektrochemischen Senkens (ECM, Electrochemical Machining). Dissertaion thesis, Heinrich-Heine-Universität, Düsseldorf

  20. Rataj K, Hammer C, Walther B, Lohrengel MM (2013) Quantified oxygen evolution at microelectrodes. Electrochim Acta 90:12–16. https://doi.org/10.1016/j.electacta.2012.12.009

    Article  CAS  Google Scholar 

  21. Aladjem A, Brandon DG, Yahalom J (1970) Electron-beam crystallization of anodic oxide films. Electrochim Acta 15(5):663–671. https://doi.org/10.1016/0013-4686(70)90029-0

    Article  CAS  Google Scholar 

  22. Ammar IA, Salim R (1971) Anodic behaviour of tungsten—I. Oxidation kinetics in acid media. Corros Sci 11(8):591–609. https://doi.org/10.1016/S0010-938X(71)80056-2

    Article  CAS  Google Scholar 

  23. Ammar IA, Salim R (1972) Anodic polarization of tungsten in neutral and alkaline solutions under conditions of anode film growth. Werkst Korros 23(3):161–167. https://doi.org/10.1002/maco.19720230302

    Article  CAS  Google Scholar 

  24. Di Quarto F, Di Paola A, Sunseri C (1980) J Electrochem Soc 127:1016–1021

    Article  Google Scholar 

  25. Vermilyea DA (1963) Journal of The Electrochem Society 110:345

  26. Arora MR, Kelly R (1977) J Electrochem Soc 124:1493–1499

    Article  CAS  Google Scholar 

  27. Khalil N, Leach JS (1986) The anodic oxidation of valve metals—I. Determination of ionic transport numbers by α-spectrometry. Electrochim Acta 31(10):1279–1285. https://doi.org/10.1016/0013-4686(86)80148-7

    Article  CAS  Google Scholar 

  28. Rataj KP (2013) Elektrochemische Charakterisierung technisch relevanter anodischer Oxidschichten bei niedrigen und höchsten Stromdichten. dissertation thesis, Heinrich-Heine-Universität Düsseldorf

  29. Walther B, Schilm J, Michaelis A, Lohrengel MM (2007) Electrochemical dissolution of hard metal alloys. Electrochim Acta 52(27):7732–7737. https://doi.org/10.1016/j.electacta.2006.12.038

    Article  CAS  Google Scholar 

  30. Lohrengel MM (1993) Mat Sci Eng R11:243–294

    Article  CAS  Google Scholar 

  31. Schultze JW, Vetter KJ (1973) The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes. Electrochim Acta 18(11):889–896. https://doi.org/10.1016/0013-4686(73)85043-1

    Article  CAS  Google Scholar 

  32. Schultze JW (1970) Potentiostatische Messungen zur Sauerstoffentwicklung und Oxidschichtbildung an Platinelektroden. Z Phys Chem 73(1_3):29–47. https://doi.org/10.1524/zpch.1970.73.1_3.029

    Article  CAS  Google Scholar 

  33. Schneider M, Schroth S, Richter S, Hohn S, Schubert N, Michaelis A (2011) In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions—Part 1: the active state. Electrochim Acta 56(22):7628–7636. https://doi.org/10.1016/j.electacta.2011.06.075

    Article  CAS  Google Scholar 

  34. Landolt D (2007) Corrosion and surface chemistry of metals. EPFL Press Lausanne: 59–61 and 89–91

  35. Chung-Cherng L, Pouyan S (1993) Role of screw axes in dissolution of willemite. Geochim Cosmochim Acta 57(8):1649–1655. https://doi.org/10.1016/0016-7037(93)90104-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the German Research Foundation (DFG) for their financial support (LO 319/16-2, MI 509/16-2, and SCHN 745/11-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubert, N., Schneider, M., Michaelis, A. et al. Electrochemical machining of tungsten carbide. J Solid State Electrochem 22, 859–868 (2018). https://doi.org/10.1007/s10008-017-3823-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3823-9

Keywords

Navigation