Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1289–1302 | Cite as

Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water

  • Emanuel R. Faria
  • Fernando M. Ribeiro
  • Débora V. Franco
  • Leonardo M. Da Silva
Original Paper
  • 58 Downloads

Abstract

A mixed oxide-covered mesh electrode composed of NiCo2O4 (MOME-NiCo2O4) was prepared on a stainless-steel substrate using thermal decomposition (slow-cooling rate method). Surface, bulk and electrochemical properties of MOME were studied using different techniques, namely scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) with determination of the electrochemical porosity (ϕ) and morphology factor (φ) parameters, quasi-stationary polarisation curves (PC) and electrochemical impedance spectroscopy (EIS). SEM images revealed a good coverage of the metallic wires by a compact oxide layer (absence of cracks). XRD analysis confirmed the formation of the spinel NiCo2O4 with the presence of NiO. The ‘in situ’ surface parameters denoted as ϕ and φ exhibited values of 0.39 and 0.33, respectively, revealing that the electrochemically active surface area is mainly confined to the ‘outer/external’ surface regions of the oxide layer. The PC was characterised by two Tafel slopes distributed in the low (b 1 = 46 mV dec−1) and high (b 2 = 59 mV dec−1) overpotential domains. The corresponding apparent exchange current densities were j 0(1) = (3.43 ± 0.11) × 10−6 A cm−2 and j 0(2) = (6.70 ± 0.08) × 10−6 A cm−2, respectively. The EIS study accomplished in the low-overpotential domain revealed a Tafel slope (b 1) of 51 mV dec−1. According to the spin-trapping reaction using N,N-dimethyl-p-nitrosoaniline (RNO), the MOME-NiCo2O4 electrode exhibited good performance for the generation of weakly adsorbed hydroxyl radicals (HO) during the OER in electrolyte-free water.

Keywords

Mixed oxide-covered mesh electrodes Ni and Co oxides Morphology factor and electrochemical porosity Generation of hydroxyl radicals 

Notes

Acknowledgements

L.M. Da Silva wishes to thank the “Fundação ao Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG” (Projects CEX-APQ-1181-14 and CEX-112-10), “Secretaria de Estado de Ciência, Tecnologia e Ensino Superior de Minas Gerais - SECTES/MG” (Support for the LMMA Laboratory) and “Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq” (PQ-2 grant). This work is a collaborative research project of members of the “Rede Mineira de Química” (RQ-MG) supported by FAPEMIG (Project: CEX-RED-00010-14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hamdani M, Singh RN, Chartier P (2010) Co3O4 and co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577Google Scholar
  2. 2.
    Rasiyah P, Tseung ACC, Hibbert DB (1982) A mechanistic study of oxygen evolution on NiCo2O4: I. Formation of higher oxides. J Electrochem Soc 129:1724–1727CrossRefGoogle Scholar
  3. 3.
    Li X, Walsh FC, Pletcher D (2011) Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys Chem Chem Phys 13:1162–1167CrossRefGoogle Scholar
  4. 4.
    Singh RN, Koenig JF, Poillerat G, Chartier P (1990) Electrochemical studies on protective thin Co3O4 and NiCo2O4 films prepared on titanium by spray pyrolysis for oxygen evolution. J Electrochem Soc 137:1408–1413CrossRefGoogle Scholar
  5. 5.
    Juodkazis K, Juodkazyte J, Vilkauskaite R, Jasulaitiene V (2008) Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J Solid State Electrochem 12:1469–1479CrossRefGoogle Scholar
  6. 6.
    Kadakia K, Datta MK, Velikokhatnyi OI et al (2014) High performance fluorine doped (Sn,Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis. J Power Sources 245:362–370CrossRefGoogle Scholar
  7. 7.
    Prathap MUA, Srivastava R (2013) Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2:1046–1053CrossRefGoogle Scholar
  8. 8.
    Prathap MUA, Satpati B, Srivastava R (2014) Facile preparation of β-Ni(OH)2-NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim Acta 130:368–380CrossRefGoogle Scholar
  9. 9.
    Ding R, Qi L, Jia M, Wang H (2013) Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O2 reduction reaction. Electrochim Acta 113:290–301CrossRefGoogle Scholar
  10. 10.
    Qian L, Gu L, Yang L et al (2013) Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nano 5:7388–7396Google Scholar
  11. 11.
    Bhojane P, Sen S, Shirage PM (2016) Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material. Appl Surf Sci 377:376–384CrossRefGoogle Scholar
  12. 12.
    Kim T, Ramadoss A, Saravanakumar B et al (2016) Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors. Appl Surf Sci 370:452–458CrossRefGoogle Scholar
  13. 13.
    Sahoo S, Ratha S, Rout CS (2015) Spinel NiCo2O4 nanorods for supercapacitor applications. Am J Eng Appl Sci 8:371–379CrossRefGoogle Scholar
  14. 14.
    Zhu Y, Pu X, Song W et al (2014) High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J Alloys Compd 617:988–993CrossRefGoogle Scholar
  15. 15.
    Zhu Y, Ji X, Wu Z et al (2014) Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material : understanding of its electrochemical properties. J Power Sources 267:888–900CrossRefGoogle Scholar
  16. 16.
    Makgae ME, Theron CC, Przybylowicz WJ, Crouch AM (2005) Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol. Mater Chem Phys 92:559–564CrossRefGoogle Scholar
  17. 17.
    Vazquez-Gomez L, Ferro S, De Battisti A (2006) Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology. Appl Catal B Environ 67:34–40CrossRefGoogle Scholar
  18. 18.
    Fabbri E, Habereder A, Waltar K et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821CrossRefGoogle Scholar
  19. 19.
    Comninellis C, Chen G (2010) Electrochemistry for the environment. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862CrossRefGoogle Scholar
  21. 21.
    Da Silva LM, Gonçalves IC, Teles JJS, Franco DV (2014) Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron marine FG using an SPE filter-press reactor. Electrochim Acta 146:714–732CrossRefGoogle Scholar
  22. 22.
    Li X, Xu H, Yan W, Shao D (2016) Electrocatalytic degradation of aniline by Ti/Sb-SnO2, Ti/Sb-SnO2/Pb3O4 and Ti/Sb-SnO2/PbO2 anodes in different electrolytes. J Electroanal Chem 775:43–51CrossRefGoogle Scholar
  23. 23.
    Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment—a review. J Electroanal Chem 754:46–56CrossRefGoogle Scholar
  24. 24.
    Irikura K, Bocchi N, Rocha-Filho RC et al (2016) Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes. J Environ Manag 183:306–313CrossRefGoogle Scholar
  25. 25.
    Fajardo AS, Seca HF, Martins RC et al (2017) Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. J Electroanal Chem 785:180–189CrossRefGoogle Scholar
  26. 26.
    Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate—comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460CrossRefGoogle Scholar
  27. 27.
    Liu Y, Liu H, Ma J, Li J (2012) Preparation and electrochemical properties of Ce-Ru-SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols. J Hazard Mater 213–214:222–229CrossRefGoogle Scholar
  28. 28.
    Iniesta J, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578CrossRefGoogle Scholar
  29. 29.
    Arihara K, Terashima C, Akira F (2007) Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes. J Electrochem Soc 154:E71–E75CrossRefGoogle Scholar
  30. 30.
    Berenguer R, La Rosa-Toro A, Quijada C, Morallón E (2008) Origin of the deactivation of spinel CuxCo3-xO4/Ti anodes prepared by thermal decomposition. J Phys Chem C 112:16945–16952CrossRefGoogle Scholar
  31. 31.
    Pichugina NM, Kutepov AM, Gorichev IG et al (2002) Dissolution kinetics of nickel (II) and nickel (III) oxides in acid media. Theor Found Chem Eng 36:485–494CrossRefGoogle Scholar
  32. 32.
    Kozhina GA, Ermakov AN, Fetisov VB et al (2009) Electrochemical dissolution of Co3O4 in acidic solutions. Russ J Electrochem 45:1261–1266CrossRefGoogle Scholar
  33. 33.
    Sato N, Okamoto G (1963) Anodic passivation of nickel in sulfuric acid solutions anodic passivation of nickel in sulfuric acid solutions. J Electrochem Soc 110:605–614CrossRefGoogle Scholar
  34. 34.
    Da Silva LM, Boodts JFC, De Faria LA (2001) Oxygen evolution at RuO2(x)+Co3O4(1−x) electrodes from acid solution. Electrochim Acta 46:1369–1375CrossRefGoogle Scholar
  35. 35.
    Gonçalves IC, Dos Santos WTP, Franco DV, Da Silva LM (2014) Fabrication and characterization of oxide fine-mesh electrodes composed of Sb-SnO2 and study of oxygen evolution from the electrolysis of electrolyte-free water in a solid polymer electrolyte filter-press cell: possibilities for the combustion of organic pollutants. Electrochim Acta 121:1–14CrossRefGoogle Scholar
  36. 36.
    Ribeiro FM, Faria ER, Verly RM et al (2016) Fabrication and characterisation of mixed oxide-covered mesh electrodes of nominal composition Ni(x)co(1-x)Oy supported on stainless-steel prepared by thermal decomposition using the slow cooling rate method. Electrochim Acta 194:127–135CrossRefGoogle Scholar
  37. 37.
    Ponce J, Ríos E, Rehspringer J-L et al (1999) Preparation of nickel aluminium + manganese spinel oxides NixAl1-xMn2O4 for oxygen electrocatalysis in alkaline medium: comparison of properties stemming from different preparation methods. J Solid State Chem 145:23–32CrossRefGoogle Scholar
  38. 38.
    Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46:3373–3380CrossRefGoogle Scholar
  39. 39.
    Ríos E, Abarca S, Daccarett P et al (2008) Electrocatalysis of oxygen reduction on CuxMn3-xO4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int J Hydrog Energy 33:4945–4954CrossRefGoogle Scholar
  40. 40.
    El Baydi M, Tiwari SK, Singh RN et al (1995) High specific surface area nickel mixed oxide powders LaNiO3 (Perovskite) and NiCo2O4 (spinel) via sol-gel type routes for oxygen electrocatalysis in alkaline media. J Solid State Chem 116:157–169CrossRefGoogle Scholar
  41. 41.
    De Faria LA, Prestat M, Koenig JF et al (1998) Surface properties of Ni + co mixed oxides : a study by X-rays, XPS, BET and PZC. Electrochim Acta 44:1481–1489CrossRefGoogle Scholar
  42. 42.
    Nkeng P, Koenig J-F, Gautier JL et al (1996) Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. J Electroanal Chem 402:81–89CrossRefGoogle Scholar
  43. 43.
    Singh RN, Pandey JP, Singh NK et al (2000) Sol-gel derived spinel MxCo3-xO4 (M = Ni, cu; 0 ≤x ≤1) films and oxygen evolution. Electrochim Acta 45:1911–1919CrossRefGoogle Scholar
  44. 44.
    Rios E, Gautier J-L, Poillerat G, Chartier P (1998) Mixed valence spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system. Electrochim Acta 44:1491–1497CrossRefGoogle Scholar
  45. 45.
    El Baydi M, Poillerat G, Rehspringer J-L et al (1994) A sol-gel for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid State Chem 109:281–288CrossRefGoogle Scholar
  46. 46.
    Liu M-C, Kong L-B, Lu C et al (2012) A sol-gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J Electrochem Soc 159:A1–A5CrossRefGoogle Scholar
  47. 47.
    Marco JF, Gancedo JR, Gracia M et al (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81CrossRefGoogle Scholar
  48. 48.
    Yuan C, Li J, Hou L et al (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597CrossRefGoogle Scholar
  49. 49.
    Lapham DP, Colbeck I, Schoonman J, Kamlag Y (2001) The preparation of NiCo2O4 films by electrostatic spray deposition. Thin Solid Films 391:17–20CrossRefGoogle Scholar
  50. 50.
    Chi B, Lin H, Li J et al (2006) Comparison of three preparation methods of NiCo2O4 electrodes. Int J Hydrog Energy 31:1210–1214CrossRefGoogle Scholar
  51. 51.
    Prathap MUA, Srivastava R (2013) Electrochemical reduction of lindane (γ-HCH) at NiCo2O4 modified electrode. Electrochim Acta 108:145–152CrossRefGoogle Scholar
  52. 52.
    Zhu T, Ang ZY, Ho GW (2015) Self-assembly formation of NiCo2O4 superstructures with porous architectures for electrochemical capacitors. RSC Adv 5:53259–53266CrossRefGoogle Scholar
  53. 53.
    Lapham DP, Lapham JL (2016) The porosity of NiCo2O4 films and powders by three common preparation techniques. Microporous and Mesoporous Mater 223:35–45CrossRefGoogle Scholar
  54. 54.
    Babu GA, Ravi G, Hayakawa Y Surfactant assisted growth and optical studies of NiCo2O4 nanostructures through microwave heating method. Int J Sci Eng Appl NCRTAM 17–20Google Scholar
  55. 55.
    Cong HN, Guadarrama VG, Gautier JL, Chartier P (2002) NixCo3 − xO4 mixed valence oxide nanoparticles/polypyrrole composite electrodes for oxygen reduction. J New Mater Electrochem Syst 5:35–40Google Scholar
  56. 56.
    Teles JJS, Faria ER, Franco DV, Da Silva LM (2017) Inner and outer surface areas, electrochemical porosity, and morphology factor of mixed oxide-covered mesh electrodes with a nominal composition of MOME-Sn0.5IrxRu(0.5−x)O2. Int J Electrochem Sci 12:1755–1773CrossRefGoogle Scholar
  57. 57.
    Grimm JH, Bessarabov DG, Simon U, Sanderson RD (2000) Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor. J Appl Electrochem 30:293–302CrossRefGoogle Scholar
  58. 58.
    Araújo DT, Gomes M de A, Silva RS et al (2017) Ternary dimensionally stable anodes composed of RuO2 and IrO2 with CeO2, SnO2, or Sb2O3 for efficient naphthalene and benzene electrochemical removal. J Appl Electrochem 47:547–561CrossRefGoogle Scholar
  59. 59.
    Da Silva LM, De Faria LA, Boodts JFC (2001) Determination of the morphology factor of oxide layers. Electrochim Acta 47:395–403CrossRefGoogle Scholar
  60. 60.
    De Pauli CP, Trasatti S (1995) Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts. J Electroanal Chem 396:161–168CrossRefGoogle Scholar
  61. 61.
    Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35:236–237CrossRefGoogle Scholar
  62. 62.
    Rufino ÉCG, De Faria LA, Da Silva LM (2011) Influência das condições de resfriamento sobre as propriedades superficiais e eletroquímicas de anodos dimensionalmente estáveis. Quim Nova 34:200–205CrossRefGoogle Scholar
  63. 63.
    Castro EB, Gervasi CA (2000) Electrodeposited Ni–Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction. Int J Hydrog Energy 25:1163–1170CrossRefGoogle Scholar
  64. 64.
    Chi B, Li J, Han Y, Chen Y (2004) Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode. Int J Hydrog Energy 29:605–610CrossRefGoogle Scholar
  65. 65.
    Cho HW, Nam JH, Park JH et al (2012) Supercapacitive properties of Co-Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull Kor Chem Soc 33:3993–3997CrossRefGoogle Scholar
  66. 66.
    Rufino ÉCG, Santana MHP, De Faria LA, Da Silva LM (2010) Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions. Chem Pap 64:749–757CrossRefGoogle Scholar
  67. 67.
    Santana MHP, De Faria LA, Boodts JFC (2005) Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode. Electrochim Acta 50:2017–2027CrossRefGoogle Scholar
  68. 68.
    Santana MHP, De Faria LA, Boodts JFC (2004) Investigation of the properties of Ti/[IrO2-Nb2O5] electrodes for simultaneous oxygen evolution and electrochemical ozone production, EOP. Electrochim Acta 49:1925–1935CrossRefGoogle Scholar
  69. 69.
    Trasatti S (ed) (1981) Electrodes of conductive metallic oxides. Elsevier, AmsterdamGoogle Scholar
  70. 70.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801CrossRefGoogle Scholar
  71. 71.
    Guene M, Diagne AA, Fall M et al (2007) Preparation of nickel-cobalt spinel oxides NixCO3-xO4. Comparison of two physical properties stemming from four different preparation methods and using carbon paste electrode. Bull Chem Soc Ethiop 21:255–262CrossRefGoogle Scholar
  72. 72.
    Da Silva LM, De Faria LA, Boodts JFC (2002) Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism, surface and electrocatalytic properties of Ti/RuO2(x)+ Co3O4(1+x) electrodes. J Electroanal Chem 532:141–150CrossRefGoogle Scholar
  73. 73.
    Da Silva LM, Fernandes KC, De Faria LA, Boodts JFC (2004) Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides: Ti/(Ru+Ti+Ce)O2-system. Electrochim Acta 49:4893–4906CrossRefGoogle Scholar
  74. 74.
    Santana MHP, Da Silva LM, De Faria LA (2003) Investigation of surface properties of Ru-based oxide electrodes containing Ti, Ce and Nb. Electrochim Acta 48:1885–1891CrossRefGoogle Scholar
  75. 75.
    Costa FR, Franco DV, Da Silva LM (2013) Electrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers. Electrochim Acta 90:332–343CrossRefGoogle Scholar
  76. 76.
    Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New YorkCrossRefGoogle Scholar
  77. 77.
    Lvovich VF (2012) Impedance spectroscopy. Wiley, New JerseyCrossRefGoogle Scholar
  78. 78.
    Simond O, Comninellis C (1997) Anodic oxidation of organics on Ti/IrO2 anodes using Nafion® as electrolyte. Electrochim Acta 42:2013–2018CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Emanuel R. Faria
    • 1
  • Fernando M. Ribeiro
    • 1
  • Débora V. Franco
    • 1
  • Leonardo M. Da Silva
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations