Skip to main content
Log in

Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A mixed oxide-covered mesh electrode composed of NiCo2O4 (MOME-NiCo2O4) was prepared on a stainless-steel substrate using thermal decomposition (slow-cooling rate method). Surface, bulk and electrochemical properties of MOME were studied using different techniques, namely scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) with determination of the electrochemical porosity (ϕ) and morphology factor (φ) parameters, quasi-stationary polarisation curves (PC) and electrochemical impedance spectroscopy (EIS). SEM images revealed a good coverage of the metallic wires by a compact oxide layer (absence of cracks). XRD analysis confirmed the formation of the spinel NiCo2O4 with the presence of NiO. The ‘in situ’ surface parameters denoted as ϕ and φ exhibited values of 0.39 and 0.33, respectively, revealing that the electrochemically active surface area is mainly confined to the ‘outer/external’ surface regions of the oxide layer. The PC was characterised by two Tafel slopes distributed in the low (b 1 = 46 mV dec−1) and high (b 2 = 59 mV dec−1) overpotential domains. The corresponding apparent exchange current densities were j 0(1) = (3.43 ± 0.11) × 10−6 A cm−2 and j 0(2) = (6.70 ± 0.08) × 10−6 A cm−2, respectively. The EIS study accomplished in the low-overpotential domain revealed a Tafel slope (b 1) of 51 mV dec−1. According to the spin-trapping reaction using N,N-dimethyl-p-nitrosoaniline (RNO), the MOME-NiCo2O4 electrode exhibited good performance for the generation of weakly adsorbed hydroxyl radicals (HO) during the OER in electrolyte-free water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hamdani M, Singh RN, Chartier P (2010) Co3O4 and co-based spinel oxides bifunctional oxygen electrodes. Int J Electrochem Sci 5:556–577

    CAS  Google Scholar 

  2. Rasiyah P, Tseung ACC, Hibbert DB (1982) A mechanistic study of oxygen evolution on NiCo2O4: I. Formation of higher oxides. J Electrochem Soc 129:1724–1727

    Article  CAS  Google Scholar 

  3. Li X, Walsh FC, Pletcher D (2011) Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys Chem Chem Phys 13:1162–1167

    Article  CAS  Google Scholar 

  4. Singh RN, Koenig JF, Poillerat G, Chartier P (1990) Electrochemical studies on protective thin Co3O4 and NiCo2O4 films prepared on titanium by spray pyrolysis for oxygen evolution. J Electrochem Soc 137:1408–1413

    Article  CAS  Google Scholar 

  5. Juodkazis K, Juodkazyte J, Vilkauskaite R, Jasulaitiene V (2008) Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J Solid State Electrochem 12:1469–1479

    Article  CAS  Google Scholar 

  6. Kadakia K, Datta MK, Velikokhatnyi OI et al (2014) High performance fluorine doped (Sn,Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysis. J Power Sources 245:362–370

    Article  CAS  Google Scholar 

  7. Prathap MUA, Srivastava R (2013) Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2:1046–1053

    Article  Google Scholar 

  8. Prathap MUA, Satpati B, Srivastava R (2014) Facile preparation of β-Ni(OH)2-NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim Acta 130:368–380

    Article  CAS  Google Scholar 

  9. Ding R, Qi L, Jia M, Wang H (2013) Porous NiCo2O4 nanostructures as bi-functional electrocatalysts for CH3OH oxidation reaction and H2O2 reduction reaction. Electrochim Acta 113:290–301

    Article  CAS  Google Scholar 

  10. Qian L, Gu L, Yang L et al (2013) Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nano 5:7388–7396

    CAS  Google Scholar 

  11. Bhojane P, Sen S, Shirage PM (2016) Enhanced electrochemical performance of mesoporous NiCo2O4 as an excellent supercapacitive alternative energy storage material. Appl Surf Sci 377:376–384

    Article  CAS  Google Scholar 

  12. Kim T, Ramadoss A, Saravanakumar B et al (2016) Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors. Appl Surf Sci 370:452–458

    Article  CAS  Google Scholar 

  13. Sahoo S, Ratha S, Rout CS (2015) Spinel NiCo2O4 nanorods for supercapacitor applications. Am J Eng Appl Sci 8:371–379

    Article  Google Scholar 

  14. Zhu Y, Pu X, Song W et al (2014) High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J Alloys Compd 617:988–993

    Article  CAS  Google Scholar 

  15. Zhu Y, Ji X, Wu Z et al (2014) Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material : understanding of its electrochemical properties. J Power Sources 267:888–900

    Article  CAS  Google Scholar 

  16. Makgae ME, Theron CC, Przybylowicz WJ, Crouch AM (2005) Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol. Mater Chem Phys 92:559–564

    Article  CAS  Google Scholar 

  17. Vazquez-Gomez L, Ferro S, De Battisti A (2006) Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology. Appl Catal B Environ 67:34–40

    Article  CAS  Google Scholar 

  18. Fabbri E, Habereder A, Waltar K et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821

    Article  CAS  Google Scholar 

  19. Comninellis C, Chen G (2010) Electrochemistry for the environment. Springer, New York

    Book  Google Scholar 

  20. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  21. Da Silva LM, Gonçalves IC, Teles JJS, Franco DV (2014) Application of oxide fine-mesh electrodes composed of Sb-SnO2 for the electrochemical oxidation of Cibacron marine FG using an SPE filter-press reactor. Electrochim Acta 146:714–732

    Article  Google Scholar 

  22. Li X, Xu H, Yan W, Shao D (2016) Electrocatalytic degradation of aniline by Ti/Sb-SnO2, Ti/Sb-SnO2/Pb3O4 and Ti/Sb-SnO2/PbO2 anodes in different electrolytes. J Electroanal Chem 775:43–51

    Article  CAS  Google Scholar 

  23. Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment—a review. J Electroanal Chem 754:46–56

    Article  Google Scholar 

  24. Irikura K, Bocchi N, Rocha-Filho RC et al (2016) Electrodegradation of the Acid Green 28 dye using Ti/β-PbO2 and Ti-Pt/β-PbO2 anodes. J Environ Manag 183:306–313

    Article  CAS  Google Scholar 

  25. Fajardo AS, Seca HF, Martins RC et al (2017) Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes. J Electroanal Chem 785:180–189

    Article  CAS  Google Scholar 

  26. Panizza M, Martinez-Huitle CA (2013) Role of electrode materials for the anodic oxidation of a real landfill leachate—comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere 90:1455–1460

    Article  CAS  Google Scholar 

  27. Liu Y, Liu H, Ma J, Li J (2012) Preparation and electrochemical properties of Ce-Ru-SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols. J Hazard Mater 213–214:222–229

    Article  Google Scholar 

  28. Iniesta J, Michaud PA, Panizza M et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578

    Article  CAS  Google Scholar 

  29. Arihara K, Terashima C, Akira F (2007) Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes. J Electrochem Soc 154:E71–E75

    Article  CAS  Google Scholar 

  30. Berenguer R, La Rosa-Toro A, Quijada C, Morallón E (2008) Origin of the deactivation of spinel CuxCo3-xO4/Ti anodes prepared by thermal decomposition. J Phys Chem C 112:16945–16952

    Article  CAS  Google Scholar 

  31. Pichugina NM, Kutepov AM, Gorichev IG et al (2002) Dissolution kinetics of nickel (II) and nickel (III) oxides in acid media. Theor Found Chem Eng 36:485–494

    Article  CAS  Google Scholar 

  32. Kozhina GA, Ermakov AN, Fetisov VB et al (2009) Electrochemical dissolution of Co3O4 in acidic solutions. Russ J Electrochem 45:1261–1266

    Article  Google Scholar 

  33. Sato N, Okamoto G (1963) Anodic passivation of nickel in sulfuric acid solutions anodic passivation of nickel in sulfuric acid solutions. J Electrochem Soc 110:605–614

    Article  CAS  Google Scholar 

  34. Da Silva LM, Boodts JFC, De Faria LA (2001) Oxygen evolution at RuO2(x)+Co3O4(1−x) electrodes from acid solution. Electrochim Acta 46:1369–1375

    Article  Google Scholar 

  35. Gonçalves IC, Dos Santos WTP, Franco DV, Da Silva LM (2014) Fabrication and characterization of oxide fine-mesh electrodes composed of Sb-SnO2 and study of oxygen evolution from the electrolysis of electrolyte-free water in a solid polymer electrolyte filter-press cell: possibilities for the combustion of organic pollutants. Electrochim Acta 121:1–14

    Article  Google Scholar 

  36. Ribeiro FM, Faria ER, Verly RM et al (2016) Fabrication and characterisation of mixed oxide-covered mesh electrodes of nominal composition Ni(x)co(1-x)Oy supported on stainless-steel prepared by thermal decomposition using the slow cooling rate method. Electrochim Acta 194:127–135

    Article  CAS  Google Scholar 

  37. Ponce J, Ríos E, Rehspringer J-L et al (1999) Preparation of nickel aluminium + manganese spinel oxides NixAl1-xMn2O4 for oxygen electrocatalysis in alkaline medium: comparison of properties stemming from different preparation methods. J Solid State Chem 145:23–32

    Article  CAS  Google Scholar 

  38. Ponce J, Rehspringer JL, Poillerat G, Gautier JL (2001) Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media. Electrochim Acta 46:3373–3380

    Article  CAS  Google Scholar 

  39. Ríos E, Abarca S, Daccarett P et al (2008) Electrocatalysis of oxygen reduction on CuxMn3-xO4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int J Hydrog Energy 33:4945–4954

    Article  Google Scholar 

  40. El Baydi M, Tiwari SK, Singh RN et al (1995) High specific surface area nickel mixed oxide powders LaNiO3 (Perovskite) and NiCo2O4 (spinel) via sol-gel type routes for oxygen electrocatalysis in alkaline media. J Solid State Chem 116:157–169

    Article  Google Scholar 

  41. De Faria LA, Prestat M, Koenig JF et al (1998) Surface properties of Ni + co mixed oxides : a study by X-rays, XPS, BET and PZC. Electrochim Acta 44:1481–1489

    Article  Google Scholar 

  42. Nkeng P, Koenig J-F, Gautier JL et al (1996) Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. J Electroanal Chem 402:81–89

    Article  Google Scholar 

  43. Singh RN, Pandey JP, Singh NK et al (2000) Sol-gel derived spinel MxCo3-xO4 (M = Ni, cu; 0 ≤x ≤1) films and oxygen evolution. Electrochim Acta 45:1911–1919

    Article  CAS  Google Scholar 

  44. Rios E, Gautier J-L, Poillerat G, Chartier P (1998) Mixed valence spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system. Electrochim Acta 44:1491–1497

    Article  CAS  Google Scholar 

  45. El Baydi M, Poillerat G, Rehspringer J-L et al (1994) A sol-gel for the preparation of Co3O4 catalyst for oxygen electrocatalysis in alkaline medium. J Solid State Chem 109:281–288

    Article  Google Scholar 

  46. Liu M-C, Kong L-B, Lu C et al (2012) A sol-gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J Electrochem Soc 159:A1–A5

    Article  Google Scholar 

  47. Marco JF, Gancedo JR, Gracia M et al (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81

    Article  CAS  Google Scholar 

  48. Yuan C, Li J, Hou L et al (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  49. Lapham DP, Colbeck I, Schoonman J, Kamlag Y (2001) The preparation of NiCo2O4 films by electrostatic spray deposition. Thin Solid Films 391:17–20

    Article  CAS  Google Scholar 

  50. Chi B, Lin H, Li J et al (2006) Comparison of three preparation methods of NiCo2O4 electrodes. Int J Hydrog Energy 31:1210–1214

    Article  CAS  Google Scholar 

  51. Prathap MUA, Srivastava R (2013) Electrochemical reduction of lindane (γ-HCH) at NiCo2O4 modified electrode. Electrochim Acta 108:145–152

    Article  Google Scholar 

  52. Zhu T, Ang ZY, Ho GW (2015) Self-assembly formation of NiCo2O4 superstructures with porous architectures for electrochemical capacitors. RSC Adv 5:53259–53266

    Article  CAS  Google Scholar 

  53. Lapham DP, Lapham JL (2016) The porosity of NiCo2O4 films and powders by three common preparation techniques. Microporous and Mesoporous Mater 223:35–45

    Article  CAS  Google Scholar 

  54. Babu GA, Ravi G, Hayakawa Y Surfactant assisted growth and optical studies of NiCo2O4 nanostructures through microwave heating method. Int J Sci Eng Appl NCRTAM 17–20

  55. Cong HN, Guadarrama VG, Gautier JL, Chartier P (2002) NixCo3 − xO4 mixed valence oxide nanoparticles/polypyrrole composite electrodes for oxygen reduction. J New Mater Electrochem Syst 5:35–40

    CAS  Google Scholar 

  56. Teles JJS, Faria ER, Franco DV, Da Silva LM (2017) Inner and outer surface areas, electrochemical porosity, and morphology factor of mixed oxide-covered mesh electrodes with a nominal composition of MOME-Sn0.5IrxRu(0.5−x)O2. Int J Electrochem Sci 12:1755–1773

    Article  CAS  Google Scholar 

  57. Grimm JH, Bessarabov DG, Simon U, Sanderson RD (2000) Characterization of doped tin dioxide anodes prepared by a sol-gel technique and their application in an SPE-reactor. J Appl Electrochem 30:293–302

    Article  CAS  Google Scholar 

  58. Araújo DT, Gomes M de A, Silva RS et al (2017) Ternary dimensionally stable anodes composed of RuO2 and IrO2 with CeO2, SnO2, or Sb2O3 for efficient naphthalene and benzene electrochemical removal. J Appl Electrochem 47:547–561

    Article  Google Scholar 

  59. Da Silva LM, De Faria LA, Boodts JFC (2001) Determination of the morphology factor of oxide layers. Electrochim Acta 47:395–403

    Article  Google Scholar 

  60. De Pauli CP, Trasatti S (1995) Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts. J Electroanal Chem 396:161–168

    Article  Google Scholar 

  61. Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes. Electrochim Acta 35:236–237

    Article  Google Scholar 

  62. Rufino ÉCG, De Faria LA, Da Silva LM (2011) Influência das condições de resfriamento sobre as propriedades superficiais e eletroquímicas de anodos dimensionalmente estáveis. Quim Nova 34:200–205

    Article  CAS  Google Scholar 

  63. Castro EB, Gervasi CA (2000) Electrodeposited Ni–Co-oxide electrodes: characterization and kinetics of the oxygen evolution reaction. Int J Hydrog Energy 25:1163–1170

    Article  CAS  Google Scholar 

  64. Chi B, Li J, Han Y, Chen Y (2004) Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode. Int J Hydrog Energy 29:605–610

    Article  CAS  Google Scholar 

  65. Cho HW, Nam JH, Park JH et al (2012) Supercapacitive properties of Co-Ni mixed oxide electrode adopting the nickel foam as a current collector. Bull Kor Chem Soc 33:3993–3997

    Article  CAS  Google Scholar 

  66. Rufino ÉCG, Santana MHP, De Faria LA, Da Silva LM (2010) Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions. Chem Pap 64:749–757

    Article  CAS  Google Scholar 

  67. Santana MHP, De Faria LA, Boodts JFC (2005) Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode. Electrochim Acta 50:2017–2027

    Article  CAS  Google Scholar 

  68. Santana MHP, De Faria LA, Boodts JFC (2004) Investigation of the properties of Ti/[IrO2-Nb2O5] electrodes for simultaneous oxygen evolution and electrochemical ozone production, EOP. Electrochim Acta 49:1925–1935

    Article  CAS  Google Scholar 

  69. Trasatti S (ed) (1981) Electrodes of conductive metallic oxides. Elsevier, Amsterdam

    Google Scholar 

  70. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801

    Article  Google Scholar 

  71. Guene M, Diagne AA, Fall M et al (2007) Preparation of nickel-cobalt spinel oxides NixCO3-xO4. Comparison of two physical properties stemming from four different preparation methods and using carbon paste electrode. Bull Chem Soc Ethiop 21:255–262

    Article  CAS  Google Scholar 

  72. Da Silva LM, De Faria LA, Boodts JFC (2002) Electrochemical impedance spectroscopic (EIS) investigation of the deactivation mechanism, surface and electrocatalytic properties of Ti/RuO2(x)+ Co3O4(1+x) electrodes. J Electroanal Chem 532:141–150

    Article  Google Scholar 

  73. Da Silva LM, Fernandes KC, De Faria LA, Boodts JFC (2004) Electrochemical impedance spectroscopy study during accelerated life test of conductive oxides: Ti/(Ru+Ti+Ce)O2-system. Electrochim Acta 49:4893–4906

    Article  Google Scholar 

  74. Santana MHP, Da Silva LM, De Faria LA (2003) Investigation of surface properties of Ru-based oxide electrodes containing Ti, Ce and Nb. Electrochim Acta 48:1885–1891

    Article  CAS  Google Scholar 

  75. Costa FR, Franco DV, Da Silva LM (2013) Electrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers. Electrochim Acta 90:332–343

    Article  CAS  Google Scholar 

  76. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  77. Lvovich VF (2012) Impedance spectroscopy. Wiley, New Jersey

    Book  Google Scholar 

  78. Simond O, Comninellis C (1997) Anodic oxidation of organics on Ti/IrO2 anodes using Nafion® as electrolyte. Electrochim Acta 42:2013–2018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.M. Da Silva wishes to thank the “Fundação ao Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG” (Projects CEX-APQ-1181-14 and CEX-112-10), “Secretaria de Estado de Ciência, Tecnologia e Ensino Superior de Minas Gerais - SECTES/MG” (Support for the LMMA Laboratory) and “Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq” (PQ-2 grant). This work is a collaborative research project of members of the “Rede Mineira de Química” (RQ-MG) supported by FAPEMIG (Project: CEX-RED-00010-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. Da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Mixed oxide-covered mesh electrodes containing Ni and Co (MOME-NiCo2O4) were fabricated using a stainless-steel support;

• The morphology factor (φ) and electrochemical porosity (ϕ) parameters confirmed the formation of a compact oxide layer;

• A good performance for the generation of hydroxyl radicals was verified during the oxygen evolution reaction in the electrolyte-free water;

• The MOME-NiCo2O4 electrode is a promising candidate for the electrochemical combustion of organic pollutants in the electrolyte-free water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, E.R., Ribeiro, F.M., Franco, D.V. et al. Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water. J Solid State Electrochem 22, 1289–1302 (2018). https://doi.org/10.1007/s10008-017-3815-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3815-9

Keywords

Navigation