Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1349–1363 | Cite as

Degradation of paracetamol in a bubble column reactor with ozone generated in electrolyte-free water using a solid polymer electrolyte filter-press electrochemical reactor

  • Lindomar G. De Sousa
  • José Geraldo M. C. Júnior
  • Rodrigo M. Verly
  • Manoel J. M. Pires
  • Débora V. Franco
  • Leonardo M. Da Silva
Original Paper
  • 87 Downloads

Abstract

A porous anode composed of β-PbO2 was electrochemically deposited onto a carbon cloth substrate (e.g., CC/β-PbO2) aiming for the electrochemical ozone production (EOP) in electrolyte-free water using a solid polymer electrolyte (SPE) filter-press reactor. Scanning electron microscopy (SEM) images revealed the presence of a three-dimensional oxide structure necessary to obtain a fluid-permeable anode. X-ray analysis showed the predominance of the β-PbO2 phase. The maximum current efficiency for the EOP was 9.5% with an ozone production rate of 1.40 g h−1. Using a constant ozone production rate of 0.5 g h−1, the oxidative degradation of paracetamol (PCT) dissolved in water was accomplished as a function of the PCT concentration (20, 30, and 50 mg L−1) and the pH (acid, natural (without adjustment), and alkaline). The UV-Vis spectrophotometric analysis showed that the degradation process is more pronounced in alkaline media with a strong reduction in the electrical energy per order (E EO). A reduction of the chemical oxygen demand (COD) of up to 80% was observed. A linear correlation between data referring to COD and HPLC measurements with the UV absorbance measured at 243 nm (UV243) was verified indicating that these different techniques can be complementary to each other. The nuclear magnetic resonance (NMR) study of the ozonation by-products revealed that the oxidation of PCT occurred through the rupture of the aromatic ring. The major part of phenol’s ring was oxidized to CO3 2− while no reaction occurs in the acetamide group of paracetamol during the ozonation reaction.

Keywords

Porous lead dioxide layer SPE filter-press reactor Electrochemical ozone production Oxidative degradation of paracetamol Bubble column reactor NMR characterization 

Notes

Funding information

L.M. Da Silva wishes to thank the “Fundação ao Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG” (Projects CEX-APQ-1181-14 and CEX-112-10), “Secretaria de Estado de Ciência, Tecnologia e Ensino Superior de Minas Gerais - SECTES/MG” (Support for the LMMA Laboratory), and “Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq” (PQ-2 grant). This work is a collaborative research project of members of the “Rede Mineira de Química” (RQ-MG) supported by FAPEMIG (Project: CEX - RED-00010-14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Da Silva LM, Franco DV, Gonçalves IC, De Sousa LG (2009) In: Gertsen N, Sonderby L (ed) Water purification. Nova Science, New YorkGoogle Scholar
  2. 2.
    Correia B, Freitas R, Figueira E, Soares AMVM, Nunes B (2016) Oxidative effects of the pharmaceutical drug paracetamol on the edible clam Ruditapes philippinarum under different salinities. Comp Biochem Physiol Part C: Toxicol Pharmacol 179:116–124Google Scholar
  3. 3.
    Mameri Y, Debbache N, Benacherine MEM, Seraghni N, Sehili T (2016) Heterogeneous photodegradation of paracetamol using goethite/H2O2 and goethite/oxalic acid systems under artificial and natural light. J Photochem Photobiol A Chem 315:129–137CrossRefGoogle Scholar
  4. 4.
    Yang L, LE Y, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488CrossRefGoogle Scholar
  5. 5.
    Arredondo-Valdez HC, García-Jiménez G, Gutiérrez-Granados S, de León PC (2012) Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 89:1195–1201CrossRefGoogle Scholar
  6. 6.
    Andreozzi R, Caprio V, Marotta R, Vogna D (2003) Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res 37:993–1004CrossRefGoogle Scholar
  7. 7.
    Hamdi El Najjar N, Touffet A, Deborde M, Journel R, Leitner KV (2014) Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, formation of transformation products and toxicity. Sep Purif Technol 136:137–143CrossRefGoogle Scholar
  8. 8.
    Skoumal M, Cabot PL, Centellas F, Arias C, Rodríguez RM, Garrido JA, Brillas E (2006) Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Appl Catal B Environ 66:228–240CrossRefGoogle Scholar
  9. 9.
    Da Silva LM, Franco DV, De Sousa LG, Gonçalves IC (2010) Characterization of an electrochemical reactor for the ozone production in electrolyte-free water. J Appl Electrochem 40:855–864CrossRefGoogle Scholar
  10. 10.
    Da Silva LM, Jardim WF (2006) Trends and strategies of ozone application in environmental problems. Quím Nova 29:310–317CrossRefGoogle Scholar
  11. 11.
    Babak AA, Amadelli R, De Battisti A, Fateev VN (1994) Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochim Acta 39:1597–1602CrossRefGoogle Scholar
  12. 12.
    Stucki S, Baumann H, Christen HJ, Kötz R (1987) Performance of a pressurized electrochemical ozone generator. J Appl Electrochem 17:773–778CrossRefGoogle Scholar
  13. 13.
    Velichenko AB, Girenko DV, Kovalyov SV, Gnatenko AN, Amadelli R, Danilov FI (1998) Lead dioxide electrodeposition and its application: influence of fluoride and iron ions. J Electroanal Chem 454:203–208CrossRefGoogle Scholar
  14. 14.
    Li X, Pletcher D, Walsh FC (2011) Electrodeposited lead dioxide coatings. Chem Soc Rev 40:3879–3894CrossRefGoogle Scholar
  15. 15.
    Ho JCK, Tremiliosi-Filho G, Simpraga R, Conway BE (1994) Structure influence on electrocatalysis and adsorption of intermediates in the anodic O2 evolution at dimorphic α- and β-PbO2. J Electroanal Chem 366:147–162CrossRefGoogle Scholar
  16. 16.
    Sang-Do H, Kim JD, Myung KS, Rana RK, Singh KC (2006) Electro-chemical production of ozone using water electrolysis cell of solid polymer electrolyte (SPE). Indian J Chem Technol 13:156–161Google Scholar
  17. 17.
    Foller PC, Tobias CW (1982) The anodic evolution of ozone. J Electrochem Soc 129:506–515CrossRefGoogle Scholar
  18. 18.
    Trasatti S (1981) Electrodes of conductive metallic oxides. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Abaci S, Pekmez K, Yildiz A (2005) The influence of nonstoichiometry on the electrocatalytic activity of PbO2 for oxygen evolution in acidic media. Electrochem Commun 7:328–332CrossRefGoogle Scholar
  20. 20.
    Devilliers D, Dinh-Thi MT, Mahé E, Dauriac V, Lequeux N (2004) Electroanalytical investigations on electrodeposited lead dioxide. J Electroanal Chem 573:227–239CrossRefGoogle Scholar
  21. 21.
    Andrade LS, Ruotolo LAM, Rocha-Filho RC, Bocchi N, Biaggio SR, Iniesta J, García-Garcia V, Montiel V (2007) On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the blue reactive 19 dye in simulated textile wastewater. Chemosphere 66:2035–2043CrossRefGoogle Scholar
  22. 22.
    Awad MI, Saleh MM (2010) Electrochemical generation of ozone at PbO2-loaded platinum screens. J Solid State Electrochem 14:1877–1883CrossRefGoogle Scholar
  23. 23.
    Chen B, Guo Z, Huang H, Yang X, Cao Y (2009) Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate. Acta Metall Sin 22:373–382CrossRefGoogle Scholar
  24. 24.
    Costa FR, Da Silva LM (2012) Fabrication and characterization of a porous gas-evolving anode constituted of lead dioxide microfibers electroformed on a carbon cloth substrate. Electrochim Acta 70:365–374CrossRefGoogle Scholar
  25. 25.
    De Sousa LG, Franco DV, Da Silva LM (2016) Electrochemical ozone production using electrolyte-free water for environmental applications. J Environ Chem Eng 4:418–427CrossRefGoogle Scholar
  26. 26.
    Mahalingam T, Velumani S, Raja M, Thanikaikarasan S, Chu JP, Wang SF, Kim YD (2007) Electrosynthesis and characterization of lead oxide thin films. Mater Charact 58:817–822CrossRefGoogle Scholar
  27. 27.
    Shen PK, Wei XL (2003) Morphologic study of electrochemically formed lead dioxide. Electrochim Acta 48:1743–1747CrossRefGoogle Scholar
  28. 28.
    Yeo IH, Kim S, Jacobson R, Johnson DC (1989) Electrocatalysis of anodic oxygen transfer reactions: comparison of structural data with electrocatalytic phenomena for bismuth-doped lead dioxide. J Electrochem Soc 136:1395–1401CrossRefGoogle Scholar
  29. 29.
    Zhou M, Dai Q, Lei L, Ma CA, Wang D (2005) Long life modified lead dioxide anode for organic wastewater treatment: electrochemical characteristics and degradation mechanism. Environ Sci Technol 39:363–370CrossRefGoogle Scholar
  30. 30.
    Amadelli R, Velichenko AB (2001) Lead dioxide electrodes for high potential anodic processes. J Serb Chem Soc 66:835–845Google Scholar
  31. 31.
    Rice EW et al. (ed), (2012) Standard methods for the examination of water and wastewater, 22 ed. American Public Health Association, New YorkGoogle Scholar
  32. 32.
    Resende JM, Moraes CM, Prates MV, Cesar A, Almeida FCL, Mundim N, Valente AP, Bemquerer MP, Piló-Veloso D, Bechinger B (2008) Solution NMR structures of the antimicrobial peptides phylloseptin-1,-2, and-3 and biological activity: the role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides 29:1633–1644CrossRefGoogle Scholar
  33. 33.
    Amadelli R, Maldotti A, Molinari A, Danilov FI, Velichenko AB (2002) Influence of the electrode history and effects of the electrolyte composition and temperature on O2 evolution at β-PbO2 anodes in acid media. J Electroanal Chem 534:1–12CrossRefGoogle Scholar
  34. 34.
    Mohd Y, Pletcher D (2005) The influence of deposition conditions and dopant ions on the structure, activity, and stability of lead dioxide anode coatings. J Electrochem Soc 152:D97–D102CrossRefGoogle Scholar
  35. 35.
    Velichenko AB, Amadelli R, Benedetti A, Girenko DV, Kovalyov SV, Danilov FI (2002) Electrosynthesis and physicochemical properties of PbO2 films. J Electrochem Soc 149:C445–C449CrossRefGoogle Scholar
  36. 36.
    Mikrajuddin A, Khairurrijal K (2008) Derivation of Scherrer relation using an approach in basic physics course. Jurnal Nanosains & Nanoteknologi 1:28–32Google Scholar
  37. 37.
    Böckris JOM (1956) Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J Chem Phys 24:817–827CrossRefGoogle Scholar
  38. 38.
    Vetter KJ (1961) Elektrochemische kinetik. Springer-Verlag, BerlimCrossRefGoogle Scholar
  39. 39.
    Da Silva LM, De Faria LA, Boodts JFC (2003) Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim Acta 48:699–709CrossRefGoogle Scholar
  40. 40.
    Da Silva LM, De Faria LA, Boodts JFC (2001) Green processes for environmental application. Electrochemical ozone production. Pure Appl Chem 73:1871–1884CrossRefGoogle Scholar
  41. 41.
    da Silva LA, Alves VA, da Silva MAP, Trasatti S, Boodts JFC (1997) Morphological, chemical, and electrochemical properties of Ti/(TiO2 + IrO2) electrodes. Can J Chem 75:1483–1493CrossRefGoogle Scholar
  42. 42.
    De Faria LA, Boodts JFC, Trasatti S (1996) Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7-x)CexO2: oxygen evolution from acidic solution. J Appl Electrochem 26:1195–1199CrossRefGoogle Scholar
  43. 43.
    Da Silva LM, Boodts JFC, De Faria LA (2001) Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution. Electrochim Acta 46:1369–1375Google Scholar
  44. 44.
    Kötz ER, Stucki S (1987) Ozone and oxygen evolution on PbO2 electrodes in acid solution. J Electroanal Chem 228:407–415CrossRefGoogle Scholar
  45. 45.
    Gileadi E (2011) Physical electrochemistry: fundamentals, techniques and applications. Wiley-VCH, WeinheimGoogle Scholar
  46. 46.
    Ho CN, Hwang BJ (1994) Effect of hydrophobicity on the hydrophobic-modified polytetrafluoroethylene/PbO2 electrode towards oxygen evolution. J Electroanal Chem 377:177–190CrossRefGoogle Scholar
  47. 47.
    Da Silva LM, Franco DV, Forti JC, Jardim WF, Boodts JFC (2006) Characterisation of a laboratory electrochemical ozonation system and its application in advanced oxidation processes. J Appl Electrochem 36:523–530CrossRefGoogle Scholar
  48. 48.
    Foller PC, Kelsall GH (1993) Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes. J Appl Electrochem 23:996–1010CrossRefGoogle Scholar
  49. 49.
    Nishiki Y, Kitaori N, Nakamuro K (2011) Performances of small-sized generator of ozone-dissolved water using boron-doped diamond electrodes. Ozone Sci Eng 33:114–120CrossRefGoogle Scholar
  50. 50.
    Feng J, Johnson DC, Lowery SN, Carey JJ (1994) Electrocatalysis of anodic oxygen-transfer reactions: evolution of ozone. J Electrochem Soc 141:2708–2711CrossRefGoogle Scholar
  51. 51.
    Huber MM, Canonica S, Park GY, Von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024CrossRefGoogle Scholar
  52. 52.
    Franco DV, Jardim WF, Boodts JFC, Da Silva LM (2008) Electrochemical ozone production as an environmentally friendly technology for water treatment. Clean 36:34–44Google Scholar
  53. 53.
    Bolton JR, Bircher KG, Tumas W, Tolman CA (2001) Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl Chem 73:627–637CrossRefGoogle Scholar
  54. 54.
    Santana MHP, Da Silva LM, Freitas AC, Boodts JFC, Fernandes KC, De Faria LA (2009) Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122. J Hazard Mater 164:10–17CrossRefGoogle Scholar
  55. 55.
    Mehrjouei M, Müller S, Möller D (2014) Catalytic and photocatalytic ozonation of tert-butyl alcohol in water by means of falling film reactor: kinetic and cost-effectiveness study. Chem Eng J 248:184–190CrossRefGoogle Scholar
  56. 56.
    Mrkva M (1983) Evaluation of correlations between absorbance at 254 nm and COD of river waters. Water Res 17:231–235CrossRefGoogle Scholar
  57. 57.
    Von Sperling M (1996) Introdução à qualidade das águas e ao tratamento de esgotos. Editora UFMG, Belo HorizonteGoogle Scholar
  58. 58.
    Thomas O, El Khorassani H, Touraud E, Bitar H (1999) TOC versus UV spectrophotometry for wastewater quality monitoring. Talanta 50:743–749CrossRefGoogle Scholar
  59. 59.
    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610CrossRefGoogle Scholar
  60. 60.
    Moret S, Dyson PJ, Laurenczy G (2013) Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO2 hydrogenation in pressurised aqueous solutions using 1H and 13C NMR spectroscopy. Dalton Trans 42:4353–4356CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lindomar G. De Sousa
    • 1
  • José Geraldo M. C. Júnior
    • 1
  • Rodrigo M. Verly
    • 1
  • Manoel J. M. Pires
    • 2
  • Débora V. Franco
    • 2
  • Leonardo M. Da Silva
    • 1
  1. 1.Departamento de QuímicaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Instituto de Ciência e Tecnologia, Faculdade de Engenharia QuímicaUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations