Skip to main content
Log in

Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This work reports the sol–gel synthesis and characterization of Pd x Nb y /C binary electrocatalysts applied to ethanol electrooxidation reactions (EORs). Catalysts were prepared using different Pd/Nb mass ratios (1:0; 1:1; 1:3; 3:1; 0:1) and were supported on Vulcan XC-72 carbon (20 wt%). The materials were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy. The EOR catalytic activity was studied by cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the EOR current density peak using Pd1Nb1/C (45.5 mA mg−1) was 2.86 times higher than that of commercial Pd/C (15.9 mA mg−1). This catalyst also showed a less positive EOR onset potential and 2.35 times higher current density than Pd/C did in CA. The Pd1Nb1/C (− 0.54 V) showed onset potential more negative than Pd/C (− 0.50 V) for CO-stripping analysis. Additionally, the addition of Nb in the Pd/C reduces COads poisoning of the electrocatalyst. The results suggest that Nb decreases the poisoning effect of CO on the Pd surface due to the bifunctional mechanism in which Nb supplies oxygenated species for CO oxidation at poisoned Pd active sites. No evidence of Pd/Nb alloy formation has been found. The maximization of the bifunctional effect occurs in Pd1Nb1/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spinacé E, Neto A, Linardi M (2004) Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. J Power Sources 129:121–126

    Article  Google Scholar 

  2. Wendt H, Götz M, Linardi M (2000) Fuel cell technology. Quím Nova 23:538–546

    Article  CAS  Google Scholar 

  3. Yu H, Zhou D, Zhu H (2014) Synthesis and characterization of Pd-La (OH) 3/C electrocatalyst for direct ethanol fuel cell. J Solid State Electrochem 18(1):125–131

    Article  Google Scholar 

  4. Guisbiers G, Khanal S, Ruiz-Zepeda F et al (2014) Cu–Ni nano-alloy: mixed, core–shell or Janus nano-particle? Nano 6:14630–14635

    CAS  Google Scholar 

  5. Choi YH, Jang YJ, Park H et al (2017) Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels. Appl Catal B Environ 202:605–610

    Article  CAS  Google Scholar 

  6. Zhang Y, Zhang H, Zhai Y et al (2007) Investigation of self-humidifying membranes based on sulfonated poly (ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications. J Power Sources 2:323–329

    Article  Google Scholar 

  7. Assumpção MHMT, da Silva SG, de Souza RFB et al (2014) Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int J Hydrog Energy 39:5148–5152

    Article  Google Scholar 

  8. Nandenha J, De Souza RFB, Assumpção MHMT et al (2013) Preparation of PdAu/C-Sb2O5·SnO2 electrocatalysts by borohydride reduction process for direct formic acid fuel cell. Ionics (Kiel) 19:1207–1213

    Article  CAS  Google Scholar 

  9. Geraldes AN, Furtunato Da Silva D, Martins Da Silva JC et al (2015) Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell. J Power Sources 275:189–199

    Article  CAS  Google Scholar 

  10. Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43:119–136

    Article  CAS  Google Scholar 

  11. Pacheco Santos V, Del Colle V, de Lima RB, Tremiliosi-Filho G (2007) In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands. Electrochim Acta 52:2376–2385

    Article  Google Scholar 

  12. Antonin V, Assumpcao M, Silva J, Parreira L (2013) Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration. Electrochim Acta 109:3431–3450

    Article  Google Scholar 

  13. Ziolek M (2003) Niobium-containing catalysts—the state of the art. Catal Today 78:47–64

    Article  CAS  Google Scholar 

  14. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195:3431–3450

    Article  CAS  Google Scholar 

  15. Yang Z-Z, Liu L, Wang A-J et al (2017) Simple wet-chemical strategy for large-scaled synthesis of snowflake-like PdAu alloy nanostructures as effective electrocatalysts of ethanol and ethylene glycol oxidation. Int J Hydrog Energy 42:2034–2044

    Article  CAS  Google Scholar 

  16. Liu Q, Xu Y, Wang A, Feng J (2016) A single-step route for large-scale synthesis of core–shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic. J Power Sources 302:394–401

    Article  CAS  Google Scholar 

  17. Wang Q, Lu X, Xin Q, Sun G (2014) Polyol-synthesized Pt2.6Sn1Ru0.4/C as a high-performance anode catalyst for direct ethanol fuel cells. Chinese J Catal 35:1394–1401

    Article  CAS  Google Scholar 

  18. Neto AO, Dias RR, Tusi MM et al (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 1:87–91

    Article  Google Scholar 

  19. Yi Q, Niu F, Song L et al (2011) Electrochemical activity of novel titanium-supported porous binary Pd-Ru particles for ethanol oxidation in alkaline media. Electroanalysis 23:2232–2240

    Article  CAS  Google Scholar 

  20. Zhang J, Zhang B, Zhang X (2016) Enhanced catalytic activity of ternary NiCoPd nanocatalyst dispersed on carbon nanotubes toward methanol oxidation reaction in alkaline media. J Solid State Electrochem 21:447–453

    Article  CAS  Google Scholar 

  21. Lović J, Jović V (2017) Electrodeposited Pd and PdNi coatings as electrodes for the electrochemical oxidation of ethanol in alkaline media. J Solid State Electrochem. https://doi.org/10.1007/s10008-017-3595-2

  22. Kamarudin MZF, Kamarudin SK, Masdar MS, Daud WRW (2013) Review: direct ethanol fuel cells. Int J Hydrog Energy 38:9438–9453

    Article  CAS  Google Scholar 

  23. Suffredini H, Tricoli V, Avaca L, Vatistas N (2004) Sol–gel method to prepare active Pt–RuO 2 coatings on carbon powder for methanol oxidation. Electrochemistry 10:1025–1028

    Article  Google Scholar 

  24. Shirley D (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 12:4709

    Article  Google Scholar 

  25. Wang Y, Nguyen TS, Liu X, Wang X (2010) Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media. J Power Sources 195:2619–2622

    Article  CAS  Google Scholar 

  26. Ting C, Liu C, Tai C et al (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172

    Article  CAS  Google Scholar 

  27. Wang R, Liao S, Ji S (2008) High performance Pd-based catalysts for oxidation of formic acid. J Power Sources 1:205–208

    Article  Google Scholar 

  28. Prabhu Y, Rao K, Kumar V, Kumari B (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 4:21

    Article  CAS  Google Scholar 

  29. Marcelo L (2010) Livros Introdução à Ciência e Tecnologia de Células a Combustível. Artliber, São Paulo

    Google Scholar 

  30. Cheng K, Jiang J, Kong S et al (2016) Pd nanoparticles support on rGO-C@ TiC coaxial nanowires as a novel 3D electrode for NaBH 4 electrooxidation. Int J Hydrog Energy 42:2943–2951

    Article  Google Scholar 

  31. Qiu X, Dai Y, Tang Y et al (2015) One-pot synthesis of gold–palladium@palladium core–shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation. J Power Sources 278:430–435

    Article  CAS  Google Scholar 

  32. Ji Y, Ying Y, Pan Y et al (2016) Palladium networks decorated by cuprous oxide for remarkably enhanced electrocatalytic activity of methanol oxidation reaction with high CO-tolerance. J Power Sources 329:115–122

    Article  CAS  Google Scholar 

  33. Hong J, Kim Y, Wi D et al (2016) Ultrathin free-standing ternary-alloy nanosheets. Angew Chem 55(8):2753–2758

    Article  CAS  Google Scholar 

  34. Li G, Xu H, Lu X et al (2015) PdCo nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54(12):3669–3673

    Article  Google Scholar 

  35. Wang A, He X, Lu X, Xu H (2015) Palladium–cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54(12):3669–3673

    Article  CAS  Google Scholar 

  36. Cui Q, Chao S, Bai Z et al (2014) Based on a new support for synthesis of highly efficient palladium/hydroxyapatite catalyst for ethanol electrooxidation. Electrochim Acta 132:31–36

    Article  CAS  Google Scholar 

  37. Zhang K, Xiong Z, Li S et al (2017) Cu 3 P/RGO promoted Pd catalysts for alcohol electro-oxidation. J Alloys Compd 706:89–96

    Article  CAS  Google Scholar 

  38. Zeinalipour-Yazdi CD, Willock DJ, Thomas L et al (2016) CO adsorption over Pd nanoparticles: a general framework for IR simulations on nanoparticles. Surf Sci 646:210–220

    Article  CAS  Google Scholar 

  39. Head AR, Karslıoǧlu O, Gerber T et al (2017) CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies. Surf Sci 665:51–55

    Article  CAS  Google Scholar 

  40. Martin NM, Van den Bossche M, Grönbeck H et al (2014) CO adsorption on clean and oxidized Pd(111). J Phys Chem C 118(2):1118–1128

    Article  CAS  Google Scholar 

  41. Geraldes AN, da Silva DF, e Silva LG de A, et al (2015) Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell. J Power Sources 293:823–830

  42. AV. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom CJP NIST X-ray photoelectron spectroscopy (XPS) database, Version 3.5. https://srdata.nist.gov/xps/. Accessed 13 Apr 2017

  43. AV. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom CJP NIST X-ray photoelectron spectroscopy (XPS) database, Version 3.5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Santos.

Electronic supplementary material

ESM 1

(DOCX 7140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura Souza, F., Parreira, L.S., Hammer, P. et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions. J Solid State Electrochem 22, 1495–1506 (2018). https://doi.org/10.1007/s10008-017-3802-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3802-1

Keywords

Navigation