Skip to main content
Log in

Carbon ceramic electrodes modified with mixed oxides SiO2/SnO2 for determination of levofloxacin

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10−5 to 6.97×10−4 mol L−1 with quantification and detection limits of 3.80×10−5 mol L−1 (14.07 mg L−1) and 1.13×10−5 mol L−1 (4.18 mg L−1), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gun G, Tsionsky M, Lev O (1994) Voltammetric studies of composite ceramic carbon working electrodes. Anal Chim Acta 294:261–270

    Article  CAS  Google Scholar 

  2. Tsionsky M, Gun G, Giezer V, Lev O (1994) Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications. Anal Chem 66:1747–1753

    Article  CAS  Google Scholar 

  3. Alfaya AAS, Kubota LT (2002) A utilização de materiais obtidos pelo processo de sol-gel na construção de biossensores. Quim Nova 25:835–841

    Article  CAS  Google Scholar 

  4. Kutner W, Wang J, L'her M, Buck RP (1998) Analytical aspects of chemically modified electrodes: classification, critical evaluation and recommendations. Pure Appl Chem 70:1301–1318

    Article  CAS  Google Scholar 

  5. Frenzer G, Maier WF (2006) Amorphous porous mixed oxides: sol-gel ways to a highly versatile class of materials and catalysts. Rev Mater Res 36:281–233

    Article  CAS  Google Scholar 

  6. Vives S, Meunier C (2008) Influence of the synthesis route on sol–gel SiO2–TiO2 (1:1), xerogels and powders. Int Ceram 34:37–44

    Article  CAS  Google Scholar 

  7. Kurihara LA, Fujiwara ST, Alfaya RVS, Gushikem Y, Alfaya AAS, Castro SC (2004) Copper (II) adsorbed on SiO2/SnO2 obtained by the sol–gel processing method: application as electrochemical sensor for ascorbic acid. J Colloid Interface Sci 274:579–586

    Article  CAS  Google Scholar 

  8. Canevari TC, Arguello J, Francisco MSP, Gushikem Y (2007) Cobalt phthalocyanine prepared in situ on a sol–gel derived SiO2/SnO2 mixed oxide: application in electrocatalytic oxidation of oxalic acid. J Electroanal Chem 609:61–67

    Article  CAS  Google Scholar 

  9. Zaitseva G, Gushikem Y, Ribeiro ES, Rosatto SS (2002) Electrochemical property of methylene blue redox dye immobilized on porous silica–zirconia–antimonia mixed oxide. Electrochim Acta 47:1469–1474

    Article  CAS  Google Scholar 

  10. Francisco MSP, Cardoso WS, Kubota LT, Gushikem Y (2007) Electrocatalytic oxidation of phenolic compounds using an electrode modified with Ni(II) porphyrin adsorbed on SiO2/Nb2O5- phosphate synthesized by the sol–gel method. J Electroanal Chem 609:61–67

    Article  Google Scholar 

  11. Pereira AC, Santos AS, Kubota LT (2003) O-Phenylenediamine adsorbed onto silica gel modified with niobium oxide for electrocatalytic NADH oxidation. Electrochim Acta 48:3541–3550

    Article  CAS  Google Scholar 

  12. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikema Y (2008) Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH. Electrochim Acta 53:4167–4175

    Article  CAS  Google Scholar 

  13. Canevari TC, Vinhas RCG, Landers R, Gushikem Y (2011) SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola’s blue: application as an electrochemical sensor for NADH. Biosens Bioelectron 26:2402–2406

    Article  CAS  Google Scholar 

  14. Vuong DD, Hien VX, Trung KQ, Chien ND (2011) Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermal route. Phys E 44:345–349

    Article  Google Scholar 

  15. Mathur S, Barth S, Shen H, Pyun JC, Werner U (2005) Size-dependent photoconductance in SnO2 nanowires. Small 7:713–771

    Article  Google Scholar 

  16. Xu X, Zhuang J, Wang X (2008) SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J Am Chem Soc 130:12527–12535

    Article  CAS  Google Scholar 

  17. Cardoso WS, Francisco MSP, Lucho AMS, Gushikem Y (2004) Synthesis and acid properties of the SiO2/SnO2 mixed oxides obtained by the sol–gel process. Evaluation of immobilized copper hexacyanoferrate as an electrochemical probe. Solid State Ionics 167:165–173

    Article  CAS  Google Scholar 

  18. Canevari TC, Luz RCS, Gushikem Y (2008) Electrocatalytic determination of nitrite on a rigid disk electrode having cobalt phthalocyanine prepared in situ. Electroanalysis 20:765–770

    Article  CAS  Google Scholar 

  19. Arguellos J, Magossos HA, Landers R, Pimentel VLC, Gushikem Y (2010) Synthesis, characterization and electroanalytical application of a new SiO2/SnO2 carbon ceramic electrode. Electrochim Acta 56:340–345

    Article  Google Scholar 

  20. Tang L, Tong Y, Zheng R, Liu W, Gu Y, Li C, Chen R, Zhang Z (2014) Ag nanoparticles and electrospun Ce-O2-Au composite nanofibers modified glassy carbon electrode for determination of levodloxacin. Sensors Actuators 203:95–101

    Article  CAS  Google Scholar 

  21. Wang F, Zhu L, Zhang L (2014) Electrochemical sensor for levofloxacin based on molecularly imprinted polypyrrole-graphene-gold nanoparticles modified electrode. Sensors Actuators B Chem 192:642–647

    Article  CAS  Google Scholar 

  22. Shao X, Li Y, Liu Y, Song Z (2011) Rapid determination of levofloxacin in pharmaceuticals and biological fluids using a new chemiluminescence system. J Anal Chem 66:102–107

    Article  CAS  Google Scholar 

  23. Ahmad I, Bano R, Sheraz MA, Ahmed S, Mirza T, Ansari SA (2013) Photodegradation of levofloxacin in aqueous and organic solvents: a kinetic study. Acta Pharma 63:223–229

    Article  CAS  Google Scholar 

  24. Radi A, El-sherif Z (2002) Determination of levofloxacin in human urine by adsorptive square-ware anodic stripping voltammetry on a glassy carbon electrode. Talanta 58:319–324

    Article  CAS  Google Scholar 

  25. Arguellos J, Magossos HA, Ramosa RR, Canevari TC, Landers R, Pimentel VLC, Gushikem Y (2009) Structural and electrochemical characterization of a cobalt phthalocyanine bulk-modified SiO2/SnO2 carbon ceramic electrode. Electrochim Acta 54:1948–1953

    Article  Google Scholar 

  26. Skeika T, Pessoa C, Fujiwara ST, Nagata N (2010) Otimização das condições de preparação de eletrodos à base de carbono cerâmico utilizando-se planejamento fatorial. Quím Nova 33:629–633

    Article  CAS  Google Scholar 

  27. Mirceski V, Lovric M (2001) Ohmic drop effects in square-wave voltammetry. J Electroanal Chem 497:114–124

    Article  CAS  Google Scholar 

  28. Brett CMA, Brett AMO (1994) Electrochemistry: principles, methods, and applications. Oxford University Press, New York

    Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons Inc., New York

    Google Scholar 

  30. Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago RM, Pimenta A (2006) General equation for the determination of the crystallite size La of nanographite by raman spectroscopy. Appl Phys Lett 88:163–106

    Article  Google Scholar 

  31. Lobo AO, Martin AA, Antunes EF, Trava-airoldi VJ, Corat EJ (2005) Caracterização de materiais carbonosos por espectroscopia Raman. Rev Bras Apli Vácuo 24:98–103

    CAS  Google Scholar 

  32. Silveira G, Morais A, Villis PCM, Maroneze CM, Gushikem Y, Lucho AMS, Pissetti FL (2012) Electrooxidation of nitrite on a silica–cerium mixed oxide carbon paste electrode. J Colloid Interface Sci 369:302–308

    Article  CAS  Google Scholar 

  33. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014

    Article  CAS  Google Scholar 

  34. Jimênez VM, Mejias JA, Espinois JP, Gonzalez-Elipe AR (1996) Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2. Surf Sci 366:545–555

    Article  Google Scholar 

  35. Huang H, Lee YC, Chow CL, Tan OK, Tse MS, Guo J, White T (2009) Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors. Sensors Actuators B Chem 138:201–206

    Article  CAS  Google Scholar 

  36. Vincent CB (2000) Handbook of Monochromatic XPS Spectra: The Elements of Native Oxides. Wiley, California

  37. Gao X, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254

    Article  CAS  Google Scholar 

  38. Cardoso WS, Francisco MSP, Landers R, Gushikem Y (2005) Co (II) porphyrin adsorbed on SiO2/SnO2/phosphate prepared by the sol–gel method application in electroreduction of dissolved dioxygen. Electrochim Acta 50:4378–4384

    Article  CAS  Google Scholar 

  39. Fontanesi C, Leonelli C, Manfredini T, Siligardi C, Pellacani GC (1998) Characterisation of the surface conductivity of glassy materials by means of impedance spectroscopy measurements. J Eur Ceram Soc 18:1593–1598

    Article  CAS  Google Scholar 

  40. Mocak J, Bond AM, Mitchell S, Scollary GA (1997) Statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl Chem 69:297–328

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Brazilian funding agencies CAPES and Fundação Araucária for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiana Andrade Pessôa.

Electronic supplementary material

ESM 1

(DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciórcero, J.R., Calaça, G.N. & Pessôa, C.A. Carbon ceramic electrodes modified with mixed oxides SiO2/SnO2 for determination of levofloxacin. J Solid State Electrochem 22, 1403–1411 (2018). https://doi.org/10.1007/s10008-017-3794-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3794-x

Keywords

Navigation