Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1449–1458 | Cite as

A novel WO3/MoS2 photocatalyst applied to the decolorization of the textile dye Reactive Blue 198

  • Suellen Aparecida Alves
  • Lorena Athie Goulart
  • Lúcia Helena Mascaro
Original Paper


A novel FTO/WO3 electrode decorated with MoS2 was constructed using two simple and low-cost techniques involving a modified single-step sol-gel method for the WO3 film together with the electrodeposition of amorphous MoS2. The photoelectrocatalytic performance of the material was investigated by monitoring the degradation of Reactive Blue 198 dye under visible-light irradiation. The FTO/WO3/MoS2 electrode exhibited excellent photocatalytic activity and afforded total decolorization of the dye after 90 min at low applied current density (5 mA cm−2). The results described herein support the view that MoS2 acts as a noble metal-free cocatalyst by promoting H2 evolution and assisting in the suppression of electron/hole pair recombination in the photocatalytic material (WO3), thereby improving the process of decolorization of the dye solution. The novel approach of combining of the WO3 and MoS2 materials shows particular promise and may prove to be very effective in the photocatalytic degradation of other hazardous organic compounds.


Photocatalyst Cocatalysis Photoelectrochemical degradation WO3/MoS2 electrode Reactive Blue 198 



This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant no. 2014/10757-4 and 2015/00231-8), Centro de Pesquisa, Inovação e Difusão/FAPESP (CEPID/FAPESP; grant no. 2013/07296-2), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Programa Professor Visitante do Exterior (CAPES/PVE).

Supplementary material

10008_2017_3771_MOESM1_ESM.docx (408 kb)
ESM 1 (DOCX 407 kb)


  1. 1.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  2. 2.
    Chen HM, Chen CK, Liu R-S, Zhang L, Zhang J, Wilkinson DP (2012) Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Rev 41:5654–5671CrossRefGoogle Scholar
  3. 3.
    Li Z, Liu J, Wang D, Gao Y, Shen J (2012) Cu2O/Cu/TiO2 nanotube ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity. Int J Hydrog Energy 37:6431–6437CrossRefGoogle Scholar
  4. 4.
    Zhan F, Li J, Li W, Liu Y, Xie R, Yang Y, Li Y, Chen Q (2015) In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. Int J Hydrog Energy 40:6512–6520CrossRefGoogle Scholar
  5. 5.
    Wang HH, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014a) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244CrossRefGoogle Scholar
  6. 6.
    Su J, Guo L, Bao N, Grimes CA (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933CrossRefGoogle Scholar
  7. 7.
    Xia L, Bai J, Li J, Zeng Q, Li X, Zhou B (2016) A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Appl Catal B Environ 183:224–230CrossRefGoogle Scholar
  8. 8.
    Gao H, Zhang P, Zhao J, Zhang Y, Hu J, Shao G (2017) Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system. Appl Catal B Environ 210:297–305CrossRefGoogle Scholar
  9. 9.
    Hu J, Wang L, Zhang P, Liang C (2016) Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nano fibers with enhanced photocatalytic hydrogen production. J Power Sources 328:28–36CrossRefGoogle Scholar
  10. 10.
    Zhang X, Zhang P, Wang L, Gao H, Zhao J, Liang C, Hu J, Shao G (2016a) Template-oriented synthesis of monodispersed SnS2@ Sn2 hetero-nanoflowers for Cr (VI) photoreduction. Appl Catal B Environ 192:17–25CrossRefGoogle Scholar
  11. 11.
    Silva MR, Lucilha AC, Afonso R, Dall’Antonia LH, Andrade LV (2014) Photoelectrochemical properties of FTO/m-BiVO4 electrode in different electrolytes solutions under visible light irradiation. Ionics (Kiel) 20:105–113CrossRefGoogle Scholar
  12. 12.
    Li H, Yu K, Lei X, Guo B, Fu H, Zhu Z (2015a) Hydrothermal synthesis of novel MoS2 /BiVO4 hetero-nanoflowers with enhanced photocatalytic activity and a mechanism investigation. J Phys Chem C 119:22681–22689CrossRefGoogle Scholar
  13. 13.
    Zhang J, Liu Z, Liu Z (2016b) Novel WO3/Sb2S3 heterojunction photocatalyst based on WO3 of different morphologies for enhanced efficiency in photoelectrochemical water splitting. ACS Appl Mater Interfaces 8:9684–9691CrossRefGoogle Scholar
  14. 14.
    He H, Berglund SP, Xiao P, Chemelewski WD, Zhang Y, Mullins CB (2013) Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance. J Mater Chem A 1:12826–12834CrossRefGoogle Scholar
  15. 15.
    Zhang M, Yang C, Pu W, Tan Y, Yang K, Zhang J (2014) Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation. Electrochim Acta 148:180–186CrossRefGoogle Scholar
  16. 16.
    Wang D, Li R, Zhu J, Shi J, Han J, Zong X, Li C (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116:5082–5089CrossRefGoogle Scholar
  17. 17.
    Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994CrossRefGoogle Scholar
  18. 18.
    Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem Commun (Camb) 50:2543–2546CrossRefGoogle Scholar
  19. 19.
    Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc 135:16872–16884CrossRefGoogle Scholar
  20. 20.
    Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y (2014b) Multi-heterojunction photocatalysts based on WO3 nanorods: structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J 237:29–37CrossRefGoogle Scholar
  21. 21.
    Amaechi CI, Asogwa PU, Ekwealor ABC, Osuji RU, Maaza M, Ezema FI (2014) Fabrication and capacitive characteristics of conjugated polymer composite p-polyaniline/n-WO3 heterojunction. Appl Phys A Mater Sci Process 117:1589–1598CrossRefGoogle Scholar
  22. 22.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefGoogle Scholar
  23. 23.
    Wang H, Lu Z, Sun J, Hymel TM, Cui Y (2014c) Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen. ACS Nano 8:4940–4947CrossRefGoogle Scholar
  24. 24.
    Yu D, Feng Y, Zhu Y, Zhang X, Li B, Liu H (2011) Template synthesis and characterization of molybdenum disulfide nanotubules. Mater Res Bull 46:1504–1509CrossRefGoogle Scholar
  25. 25.
    Xiang ZC, Zhang Z, Xu X, Zhang Q, Yuan C (2016) MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon N Y 98:84–89CrossRefGoogle Scholar
  26. 26.
    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144CrossRefGoogle Scholar
  27. 27.
    Zong X, Xing Z, Yu H, Bai Y, Max LGQ, Wang L (2014) Photocatalytic hydrogen production in a noble-metal-free system catalyzed by in situ grown molybdenum sulfide catalyst. J Catal 310:51–56CrossRefGoogle Scholar
  28. 28.
    Du T, Wang N, Chen H, He H, Lin H, Liu K (2015) TiO2-based solar cells sensitized by chemical-bath-deposited few-layer MoS2. J Power Sources 275:943–949CrossRefGoogle Scholar
  29. 29.
    Yuan YJ, Tu JR, Ye ZJ, Lu HW, Ji ZG, Hu B, Li Y-H, Cao D-P, Yu Z-T, Zou Z-G (2015) Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes Pigments 123:285–292CrossRefGoogle Scholar
  30. 30.
    Tacchini I, Terrado E, Anson A, Martinez MT (2011) Preparation of a TiO2-MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light. Micro Nano Lett 6:932–936CrossRefGoogle Scholar
  31. 31.
    Alves SA, Soares LL, Goulart LA, Mascaro LH (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electrochem:1–10Google Scholar
  32. 32.
    Vrubel H, Hu X (2013) Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal 3:2002–2011CrossRefGoogle Scholar
  33. 33.
    Merki D, Hu X (2011) Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 4:3878–3888CrossRefGoogle Scholar
  34. 34.
    Adhikari S, Sarkar D, Maiti HS (2014) Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater Res Bull 49:325–330CrossRefGoogle Scholar
  35. 35.
    Rajkumar K, Muthukumar M, Mangalaraja RV (2011) Electrocatalytic oxidation of reactive blue 198 using Sm3+ doped cerium oxide as a catalyst. Proc Int Conf Nanosci Eng Technol 14–18Google Scholar
  36. 36.
    Vasconcelos VM, Ribeiro FL, Migliorini FL, Alves SA, Steter JR, Baldan MR, Ferreira NG, Lanza MRV (2015) Electrochemical removal of Reactive Black 5 azo dye using non-commercial boron-doped diamond film anodes. Electrochim Acta 178:484–493CrossRefGoogle Scholar
  37. 37.
    Migliorini FL, Braga NA, Alves SA, Lanza MRV, Baldan MR, Ferreira NG (2011) Anodic oxidation of wastewater containing the Reactive Orange 16 dye using heavily boron-doped diamond electrodes. J Hazard Mater 192:1683–1689CrossRefGoogle Scholar
  38. 38.
    Garcia-segura S, Dosta S, Guilemany JM, Brillas E (2013) Solar photoelectrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Appl Catal B Environ 132–133:142–150CrossRefGoogle Scholar
  39. 39.
    Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, Yusoff NA, Nordin N (2015) Enhanced electricity generation and degradation of the azo dye Reactive Green 19 in a photocatalytic fuel cell using ZnO/Zn as the photoanode. J Clean Prod 127:579–584CrossRefGoogle Scholar
  40. 40.
    Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Carbon N Y 66:450–458CrossRefGoogle Scholar
  41. 41.
    Ntsendwana B, Sampath S, Mamba BB, Oluwafemi OS, Arotiba OA (2016) Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode. J Mater Sci Mater Electron 27:592–598CrossRefGoogle Scholar
  42. 42.
    Li Q, Li X, Wageh S, Al-Ghamdi A A, Yu J (2015b) CdS/graphene nanocomposite photocatalysts. Adv Energy MaterGoogle Scholar
  43. 43.
    Zhao Y, Yang Z, Zhang Y, Lin J, Guo X, Ke Z, Hu P, Wang G, Yan Y-M, Sun K-N (2014) Cu2O decorated with co-catalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light. J Phys Chem C 118:14238–14245CrossRefGoogle Scholar
  44. 44.
    Zhu Y, Ling Q, Liu Y, Wang H, Zhu Y (2015) Photocatalytic H2 evolution on MoS2-TiO2 catalysts synthesized via mechanochemistry. Phys Chem Chem Phys 17:933–940CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations