Skip to main content

Advertisement

Log in

Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sb2Se3 (SSe) has been highlight as a low-cost, less complex, low toxicity, and earth-abundant photovoltaic (PV) absorber not only because of its excellent properties but also because of its demonstrated 5.6% certified efficiency and decent device stability. An understanding of the effects of intentional dopants on the properties of this material would help to further improve SSe PV devices. In this work, Fe-doped SSe thin film was obtained by electrodeposition at different levels of doping, which is an easy, cheap, and scalable technique. At the studied levels, this dopant caused low influence in band gap and morphologic-structural properties of the films; however, it did impact their electronic properties and photoactivity toward hydrogen gas evolution. The film obtained from a deposition bath composed of 5% of Fe presented a photocurrent similar to that shown by the undoped film, despite showing a carrier density that was three orders of magnitude higher. This behavior makes us believe that, compared to the undoped film, a photovoltaic device made with this 5% Fe-doped film would have a higher fill factor and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shi X, Zhang X, Tian Y, Shen C, Wang C, Gao H (2012) Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: nucleation and growth. Appl Surf Sci 258:2169–2173

    Article  CAS  Google Scholar 

  2. Tang A, Long M, He Z (2014) Electrodeposition of Sb2Se3 on TiO2 nanotube arrays for catalytic reduction of p-nitrophenol. Electrochim Acta 146:346–352

    Article  CAS  Google Scholar 

  3. Zeng K, Xue D-J, Tang J (2016) Antimony selenide thin-film solar cells. Semicond Sci Technol 31:1–13

    Article  Google Scholar 

  4. Rodríguez-Lazcano Y, Pena Y, Nair MTS, Nair PK (2005) Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments. Thin Solid Films 493:77–82

    Article  Google Scholar 

  5. Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York

    Google Scholar 

  6. Grundman M (2010) The physics of semiconductors: an introduction including nanophysics and applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  7. Yu PY, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  8. Tlig F, Gannouni M, Assaker IB, Chtourou R (2017) New investigation on the physical and electrochemical properties of (TAS) thin films grown by electrodeposition technique. J Photochem Photobiol A Chem 335:26–35

    Article  CAS  Google Scholar 

  9. Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y (2012) Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Appl Surf Sci 261:510–514

    Article  CAS  Google Scholar 

  10. Hossain MA, Al-Gaashani R, Hamoudi H, Al-Marri MJ, Hussein IA, Belaidi A, Merzougui BA, ALharbi FH, Tabet N (2017) Controlled growth of Cu2O thin films by electrodeposition approach. Mater Sci Semicond Process 63:203–211

    Article  CAS  Google Scholar 

  11. Lucas FWS, Lima ARF, Mascaro LH (2015) Glycerol as additive in copper indium gallium diselenide electrodeposition: morphological, structural and electronic effects. RSC Adv 5:18295–18300

    Article  CAS  Google Scholar 

  12. Gromboni MF, Lucas FWS, Mascaro LH (2014) Optical properties and surface morphology of ZnTe thin films prepared by multiple potential steps. J Braz Chem Soc 23:526–531

    Google Scholar 

  13. Ullah S, Mollar M, Marí B (2016) Electrodeposition of CuGaSe2 and CuGaS2 thin films for photovoltaic applications. J Solid State Electrochem 20:2251–2257

    Article  CAS  Google Scholar 

  14. Lucas FWS, Welch AW, Baranowski LL, Dippo PC, Hempel H, Unold T, Eichberger R, Blank B, Rau U, Mascaro LH, Zakutayev A (2016) Effects of thermochemical treatment on CuSbS2 photovoltaic absorber quality and solar cell reproducibility. J Phys Chem C 120:18377–18385

    Article  Google Scholar 

  15. Fairbrother A, García-Hemme E, Izquierdo-Roca V, Fontané X, Pulgarín-Agudelo FA, Vigil-Galán O, Pérez-Rodríguez A, Saucedo E (2012) Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. J Am Chem Soc 134:8018–8021

    Article  CAS  Google Scholar 

  16. Chavda A, Patel M, Mukhopadhyay I, Ray A (2016) Facile, noncyanide based etching of spray deposited Cu2ZnSnS4 thin films for secondary phase removal. ACS Sustain Chem Eng 4:2302–2308

    Article  CAS  Google Scholar 

  17. Yang C, Wang Y, Li S, Wan D, Huang F (2012) CuSbSe2-assisted sintering of CuInSe2 at low temperature. J Mater Sci 47:7085–7089

    Article  CAS  Google Scholar 

  18. Altamura G, Wang M, Choy K-L (2016) Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells. Sci Rep 6:22109

    Article  CAS  Google Scholar 

  19. El Ruby MA, Rohani S (2011) Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ Sci 4:1065

    Article  Google Scholar 

  20. Asaduzzaman M, Hasan M, Bahar AN (2016) An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency. SpringerPlus 5:578

    Article  Google Scholar 

  21. Liu X, Chen C, Wang L, Zhong J, Luo M, Chen J, Xue D-J, Li D, Zhou Y, Tang J (2015) Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Prog Photovolt Res Appl 23:1828–1836

    Article  CAS  Google Scholar 

  22. Li D-F, Luo M, Li B-L, Wu C-B, Deng B, Dong H-N (2013) Low-resistivity p-type doping in Wurtzite ZnS using codoping method. Adv Condens Matter Phys 2013:1–4

    Google Scholar 

  23. Li J, Wang B, Liu F, Yang J, Li J, Liu J, Jia M, Lai Y, Liu Y (2011) Preparation and characterization of Bi-doped antimony selenide thin films by electrodeposition. Electrochim Acta 56:8597–8602

    Article  CAS  Google Scholar 

  24. Li Y, Zhou Y, Zhu Y, Chen C, Luo J, Ma J, Yang B, Wang X, Xia Z, Tang J (2016) Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application. Appl Phys Lett 109:1–6

    Google Scholar 

  25. Abdi FF, Chemseddine A, Berglund SP, van de Krol R (2016) Assessing the suitability of iron tungstate (Fe2WO6) as a photoelectrode material for water oxidation. J Phys Chem C 121:153–160

    Article  Google Scholar 

  26. Costa MB, de Souza Lucas FW, Mascaro LH (2017) Thermal treatment effects on electrodeposited Sb2Se3 photovoltaic thin films. ChemElectroChem 4:1–9

    Article  Google Scholar 

  27. Ngo TT, Chavhan S, Kosta I, Miguel O, Grande HJ, Tena-Zaera R (2014) Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. ACS Appl Mater Interfaces 6:2836–2841

    Article  CAS  Google Scholar 

  28. Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:46107

    Article  CAS  Google Scholar 

  29. de Lucas FWS, Lima ARF, Mascaro LH (2014) The electrodeposition of Ga-doped CuInSe2 thin film in the presence of Triton 100-X. Electrochim Acta 147:47–53

    Article  CAS  Google Scholar 

  30. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688

    Article  CAS  Google Scholar 

  31. Albery WJ, O’Shea GJ, Smith AL (1996) Interpretation and use of Mott-Schottky plots at the semiconductor/electrolyte interface. J Chem Soc Faraday Trans 92:4083–4085

    Article  CAS  Google Scholar 

  32. Bott AW (1998) Electrochemistry of semiconductors. Curr Sep 17:87–91

    CAS  Google Scholar 

  33. Zoski CG (2007) Handbook of electrochemistry, 1st edn. Elsevier, New Mexico

    Google Scholar 

  34. Lide DR (2010) CRC handbook of chemistry and physics, 90nd edn. CRC Press, Boca Raton

    Google Scholar 

  35. Lai Y, Han C, Lv X, Yang J, Liu F, Li J, Liu Y (2012) Electrodeposition of antimony selenide thin films from aqueous acid solutions. J Electroanal Chem 671:73–79

    Article  CAS  Google Scholar 

  36. Torane AP, Rajpure KY, Bhosale CH (1999) Preparation and characterization of electrodeposited Sb2Se3 thin films. Mater Chem Phys 61:219–222

    Article  CAS  Google Scholar 

  37. Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D-J, Lv L, Huang H, Niu D, Tang J (2014) Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl Mater Interfaces 6:10687–10695

    Article  CAS  Google Scholar 

  38. Beranek R (2011) (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv Phys Chem 2011:1–20

    Article  Google Scholar 

  39. Vesborg PCK, Seger B, Chorkendor I (2015) Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett 6:951–957

    Article  CAS  Google Scholar 

  40. Gong M, Wang DY, Chen CC, Hwang BJ, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28–46

    Article  CAS  Google Scholar 

  41. Mali MG, Yoon H, Joshi BN, Park H, Al-Deyab SS, Lim DC, Ahn S, Nervi C, Yoon SS (2015) Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode. ACS Appl Mater Interfaces 7:21619–21625

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Counsel of Technological and Scientific Development (CNPq) and the São Paulo Research Foundation (FAPESP), grant #2016/10513-3 and CEPID grant #2013/07296-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Willian de Souza Lucas or Lucia Helena Mascaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.B., de Souza Lucas, F.W. & Mascaro, L.H. Electrodeposition of Fe-doped Sb2Se3 thin films for photoelectrochemical applications and study of the doping effects on their properties. J Solid State Electrochem 22, 1557–1562 (2018). https://doi.org/10.1007/s10008-017-3768-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3768-z

Keywords

Navigation