Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1395–1402 | Cite as

Square wave voltammetry of nitrofurans in aqueous media using a carbon fiber microelectrode

  • Luisa Donatto Chiavassa
  • Mauro Aquiles La-Scalea
Original Paper


The nitrofuran compounds exhibit a wide spectrum of biological action, and the understanding of their reduction mechanism can contribute to a better comprehension of their biological action. In this sense, the electrochemical reduction of nitrofurans has been studied through square wave voltammetry (SWV) in aqueous media, having a carbon fiber microelectrode as working electrode. One single cathodic peak in acidic media is registered for all studied drugs (nitrofurazone, nitrofurantoin, and furazolidone), being the hidroxylamine derivative formation linearly dependent on pH. In alkaline media, the peaks reduction is not pH-dependent, but a split of the original into two distinct peaks is observed. The evaluation of the results obtained in unprecedented form by SWV for different alkaline pH media, suggests that the charge transfer process for the R-NO2 •− formation is followed by irreversible chemical reaction, which chacraterizes an EC mechanism.


Nitrofurans Square wave voltammetry Carbon fiber microelectrode EC mechanism Nitro-anion radical Alkaline aqueous media 


  1. 1.
    Raether W, Hänel H (2003) Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 90(1 sup):S19–S39Google Scholar
  2. 2.
    Chung MC, Bosquesi PL, Santos JL (2011) A prodrug approach to improve the physico-chemical properties and decrease the genotoxicity of nitro compounds. Curr Pharm Des 17(32):3515–3526CrossRefGoogle Scholar
  3. 3.
    Bot C, Hall BS, Álvarez G, Di Maio R, González M, Cerecetto H, Wilkinsona SR (2013) Evaluating 5-nitrofurans as trypanocidal agents. Antimicrob Agents Chemother 57(4):1638–1647CrossRefGoogle Scholar
  4. 4.
    Giarolla J, Ferreira EI (2015) Design for neglected disease in Brazil. Mini-Rev Med Chem 15(3):220–242CrossRefGoogle Scholar
  5. 5.
    Sanchez-Sancho F, Campillo N, Paez J (2010) Chagas disease: progress and new perspectives. Curr Med Chem 17(5):423–452CrossRefGoogle Scholar
  6. 6.
    Coura JR, Pereira-Borges J (2012) Chagas disease.What is known and what should be improved: a systemic review. Soc Bras Med Trop 45(3):289–296Google Scholar
  7. 7.
    World Health Organization (nd) Accessed 04 Jul 2017
  8. 8.
    Montanari CA (2011) Química Medicinal, Métodos e Fundamentos em Planejamento de Fármacos. Edusp, São PauloGoogle Scholar
  9. 9.
    Trossinni GHG, Malvezzi A, do Amaral AT, Rangel-Yagui CO, Izidoro MA, MHS C, Juliano L, Chin CM, CMS M, Ferreira EI (2010) Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: investigation of new target in Tryponosoma cruzi. J Enzyme Inhib Med Chem 25(1):62–67CrossRefGoogle Scholar
  10. 10.
    Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH4 by means of Au nanoparticles dispersed in a conducting polymer matrix. J Solid State Electrochem 19(9):2849–2858CrossRefGoogle Scholar
  11. 11.
    Tocher JH, Edwards DI (1988) Electrochemical characteristics of nitro-heterocyclic compounds of biological interest: the influence of solvent. Free Radic Res Commun 4(5):269–276CrossRefGoogle Scholar
  12. 12.
    Tocher JH (1997) Reductive activation of nitroheterocyclic compounds. Gen Pharmacol 28(4):485–487CrossRefGoogle Scholar
  13. 13.
    Squella JA, Bollo S, Núñez-Vergara LJ (2005) Recent develpoments in the electrochemistry of some nitro compounds of biological signifcance. Curr Org Chem 9(6):565–581CrossRefGoogle Scholar
  14. 14.
    La-Scalea MA, Menezes CMS, Julião MSS, Chung MC, Serrano SHP, Fereira EI (2005) Voltammetric behavior of nitrofurazone and its hydroxymethyl prodrug with potential anti-Chagas activity. J Braz Chem Soc 16(4):774–782CrossRefGoogle Scholar
  15. 15.
    Julião MSS, Almeida EC, La Scalea MA, Ferreira NG, Compton RG, Serrano SHP (2005) Voltammetric behavior of nitrofurazone at highly boron doped diamond electrode. Electroanalysis 17(3):269–274CrossRefGoogle Scholar
  16. 16.
    La-Scalea MA, Trossini GHG, Menezes CMS, Chung MC, Ferreira EI (2009) Electrochemical reduction using glassy carbon electrode in aqueous medium of a potential anti-Chagas drug: NFOH. J Electrochem Soc 156(7):F93–F97CrossRefGoogle Scholar
  17. 17.
    Brito CL, Trossini GHG, Ferreira EIF, La-Scalea MA (2013) Nitrofurazone and its nitroheterocyclic analogues: a study of the eletrochemical behavior in aqueous medium. J Braz Chem Soc 24(12):1964–1973Google Scholar
  18. 18.
    Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S (2011) Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem 408(2):179–196CrossRefGoogle Scholar
  19. 19.
    Zuman P (2011) Past, present, and future of applications of electroanalytical techniques in analytical and physical organic chemistry. J Solid State Electrochem 15(7–8):1753–1759CrossRefGoogle Scholar
  20. 20.
    Almeida MO, Maltarollo VG, de Toledo RA, Shim H, Santos MC, Honorio KM (2014) Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry. Curr Med Chem 21(20):2266–2275CrossRefGoogle Scholar
  21. 21.
    Nematollahi D, Ariapad A, Rafiee M (2007) Electrochemical nitration of catechols: kinetic study by digital simulation of cyclic voltammograms. J Electroanal Chem 602(1):37–42CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52(25):7210–7216CrossRefGoogle Scholar
  23. 23.
    Symons T, Tocher JH, Tocher DA, Edwards DI (1991) Electrochemical studies of nitroheterocyclic compounds of biologica interest VII. Effect of electrode marterial. Free Rad Res Comms 14(1):33–40CrossRefGoogle Scholar
  24. 24.
    Mandal PC (2004) Reactions of the nitro radical anion of metronidazole in aqueous and mixed solvent: a cyclic voltammetric study. J Electroanal Chem 570(1):55–61CrossRefGoogle Scholar
  25. 25.
    Mozo JD, Carbajo J, Sturm JC, Núñez-Vergara LJ, Moscoso R, Squella JA (2011) The use of digital simulation to improve the cyclic voltammetric determination ofrate constants for homogeneous chemical reactions following charge transfers. Anal Chim Acta 699(1):33–43CrossRefGoogle Scholar
  26. 26.
    Pedrosa VA, Codognoto L, Avaca LA (2003) Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. J Braz Chem Soc 14(4):530–535CrossRefGoogle Scholar
  27. 27.
    Yin H, Zhou Y, Han R, Qiu Y, Ai S, Zhu L (2012) Electrochemical oxidation behavior of 2,4-dinitrophenol at hydroxylapatite film-modified glassy carbon electrode. J Solid State Electrochem 16(1):75–82CrossRefGoogle Scholar
  28. 28.
    Karuppiah C, Palanisamy S, Chen S-H, Emmanuel R, Ali MA, Muthukrishnan P, Prakash P, Al-Hemaid FMA (2014) Green biosynthesis of silver nanoparticles and nanomolar detection of p-nitrophenol and its determination in water samples. J Solid State Electrochem 18(7):1847–1854CrossRefGoogle Scholar
  29. 29.
    Zhuang Y, Cai L, Cao G (2014) Determination of chloramphenicol by voltammetric method. J Electrochem Soc 161(3):H129–H132CrossRefGoogle Scholar
  30. 30.
    Mirceski V, Lovric M (2000) Adsorption effects in square-wave voltammetry of an EC mechanism. Croat Chem Acta 73(2):305–329Google Scholar
  31. 31.
    Lovrić M, Jadreško D, Komorsky-Lovrić S (2013) Theory of square-wave voltammetry of electrode reaction followed by the dimerization of product. Eletrochim Acta 90:226–231CrossRefGoogle Scholar
  32. 32.
    Mirceski V, Gulaboski R (2014) Recent achievements in square-wave voltammetry. A review Macedonian J Chem Chem Eng 33(1):1–12Google Scholar
  33. 33.
    Čižmek L, Komorsky-LovrićŠ LM (2015) Comparison of cyclic and square wave voltammetry of irreversible EC mechanisms. ChemElectroChem 2(12):2027–2031CrossRefGoogle Scholar
  34. 34.
    Baur J, Wifhtman M (1991) Diffusion coefficients determined with microelectrodes. J Electroanal Chem 305(1):73–81CrossRefGoogle Scholar
  35. 35.
    Forster RJ (1994) Microelectrodes: new dimensions in electrochemistry. Chem Soc Rev 23(4):289–297CrossRefGoogle Scholar
  36. 36.
    Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley-VCH, New YorkCrossRefGoogle Scholar
  37. 37.
    de Souza D, Codgnoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2003) Voltametria de onda quadrada. Primeira parte: aspectos teóricos. Quim Nova 26(1):81–89CrossRefGoogle Scholar
  38. 38.
    de Souza D, Codgnoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2004) Voltametria de onda quadrada. Segunda parte: aplicações. Quim Nova 27(5):790–797CrossRefGoogle Scholar
  39. 39.
    Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry. Springer, BerlinGoogle Scholar
  40. 40.
    Bard AJ, Faulkner LF (2001) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New WorkGoogle Scholar
  41. 41.
    Costentin C (2008) Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem Rev 108(7):2145–2179CrossRefGoogle Scholar
  42. 42.
    Mirceski V, Guziejewski D, Lisichkov K (2013) Electrode kinect measurements with square-wave voltammetry at the constant scan rate. Electrochim Acta 114:667–673CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Luisa Donatto Chiavassa
    • 1
  • Mauro Aquiles La-Scalea
    • 1
  1. 1.Departamento de Química, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations