Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1423–1429 | Cite as

New voltammetric method useful for water insoluble or weakly soluble compounds: application to pKa determination of hydroxyl coumarin derivatives

  • C. Barrientos
  • P. Navarrete-Encina
  • J. Carbajo
  • J. A. SquellaEmail author
Original Paper


Here, we reveal a different way of doing the voltammetric experiments that considers the electroactive species packaged in the electrodic phase instead of dissolved in solution. In this way, it is possible to obtain voltammograms of insoluble species. In this work, the method is exemplified by obtaining voltammograms for weakly soluble coumarins but it could be extrapolated to other weakly soluble compounds. We have studied a comprehensive series of 3-acetyl-hydroxycoumarins derivatives which are insoluble in aqueous medium but capable of being trapped in a three-dimensional multi-walled carbon nanotubes (MWCNT) network. Consequently, an electrodic phase composed of an MWCNT modified glassy carbon electrode (GCE) containing the coumarin derivative is prepared. The voltammetric experiment is performed with the above electrodic phase and an aqueous medium as the solution phase. All the coumarin derivatives show one anodic peak due to the oxidation of the hydroxyl group in the phenyl ring. The oxidation peaks follow a one-electron, one-proton irreversible, pH-dependent process for all monohydroxylated compounds. The Ep values are closely dependent of the substituent effect being the 7,8-cum derivative more easily oxidized due to both the electron donor effect of neighboring hydroxyls groups and hydrogen bonding interaction between them. On the other hand, the hydroxyl of the 7-cum derivative is the most difficult to oxidize due to the electron-attracting effect of the lactone carbonyl group at position 2 and acetyl carbonyl at position 3 which is conjugated with OH at 7 positions. From the breaks in the graphs Ep versus pH, we estimate the voltammetric pKa values for all the studied coumarin derivatives.


Coumarin derivatives MWCNT Modified electrode 



The authors thank the financial support from FONDECYT project N° 1170054.


  1. 1.
    Hamon MA, Itkis ME, Niyogi S, Alvarez T, Kuper C, Menon M, Haddon RC (2001) Effect of rehybridization on the electronic structure of single-walled carbon nanotubes. J Am Chem Soc 123:11292–11293CrossRefGoogle Scholar
  2. 2.
    Han J (2005) In: Meyyappan M (ed) Carbon nanotubes: science and applications. CRC Press, London, p 1Google Scholar
  3. 3.
    Mercè Pacios Pujadó, (eds)(2011) Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction. Springer, p.9Google Scholar
  4. 4.
    Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85(3):609–631CrossRefGoogle Scholar
  5. 5.
    Doménech-Carbó A, Walcarius A (2015) Electrochemistry supported by zeolites, clays, layered double hydroxides, ordered mesoporous (organo) silicas, and related materials. J Solid State Electrochem 19:1885–1886CrossRefGoogle Scholar
  6. 6.
    Moscoso R, Carbajo J, López M, Núñez-Vergara LJ, Squella JA (2011) A simple derivatization of multiwalled carbon nanotubes with nitroaromatics in aqueous media: modification with nitroso/hydroxylamine groups. Electrochem Commun 13:217–220CrossRefGoogle Scholar
  7. 7.
    Moscoso R, Carbajo J, Squella JA (2014) Multiwalled carbon nanotubes modified electrodes with encapsulated 1,4-dihydro-pyridine-4-nitrobenzene substituted compounds. J Chil Chem Soc 59:2248–2251CrossRefGoogle Scholar
  8. 8.
    Moscoso R, Carbajo J, Squella JA (2014) 1,3-dioxolane: a green solvent for the preparation of carbon nanotube-modified electrodes. Electrochem Commun 48:69–72CrossRefGoogle Scholar
  9. 9.
    Moscoso R, Inostroza E, Squella J.A. (2017) A non-conventional way to perform voltammetry. Electrochem Commun 81:61–64Google Scholar
  10. 10.
    Brufola G, Fringuelli F, Piermatti O, Pizzo F (1996) Simple and efficient one-pot preparation of 3-substituted coumarins in water. Heterocycles 43:1257–1266CrossRefGoogle Scholar
  11. 11.
    Gupta JK, Sharma PK, Dudhe R, Chaudhary A, Verma PK (2010) Synthesis, analgesic and ulcerogenic activity of novel pyrimidine derivative of coumarin moiety. Analele Universitătii Bucuresti 19(2):9–21Google Scholar
  12. 12.
    Tasqeerudin S, Abdullah S, Al-Arifi and Dubey PK (2013) An efficient solid-phase green synthesis of chromen-2-one derivatives. Chem Asian J 25(12):6885–6887Google Scholar
  13. 13.
    Baghernejad B (2016) A new strategy for the synthesis of 3-Acyl-coumarin using nano ZnO as an efficient catalyst. Der Pharma Chem 8(2):109–113Google Scholar
  14. 14.
    Hua X, Hea J, Wang Y, Zhua Y, Tianb J (2011) Oxidative spectroelectrochemistry of two representative coumarins. Electrochim Acta 56:2919–2925CrossRefGoogle Scholar
  15. 15.
    Petrucci R, Saso L, Kumar V, Prasad AK, Malhotra SV, Parmar VS, Marrosu G (2010) A spectrochemical and chemical study on oxidation of 7,8-dihydroxy-4-methylcoumarin (DHMC) and some related compounds in aprotic medium. Biochimie 92:1123–1129CrossRefGoogle Scholar
  16. 16.
    Carneiro K, Torres L, Ferreira L, Garcia S, de Oliveira-Neto J, Marques F, Alves T, Verly R, dos Santos W, de Souza E (2015) Eletrochemical characterization of scopoletin, a 7-hydroxy-6- methoxy-coumarin. Int J Electrochem Sci 10:5714–5725Google Scholar
  17. 17.
    Pardo-Jiménez V, Barrientos C, Squella JA, Navarrete-Encina PA, Núnez-Vergara LJ (2011) Electrochemical oxidation of 7,8- and 9-hidroxy-3-ethoxycarbonyl-2,4-dimethyl coumarin [4,3-b] pyridine isomers at glassy carbon in DMF. J Electrochem Soc 58:F166–F172CrossRefGoogle Scholar
  18. 18.
    Pardo-Jiménez V, Barrientos C, Pérez-Cruz K, Navarrete-Encina PA, Olea-Azar C, Núñez-Vergara LJ, Squella JA (2014) Synthesis and electrochemical oxidation of hybrid compounds: dihydropyridine-fused coumarins. Electrochim Acta 125:457–464CrossRefGoogle Scholar
  19. 19.
    Stradins J, Hasanli B (1993) Anodic voltammetry of phenol and benzenethiol derivatives. Part 1. Influence of pH on electro-oxidation potentials of substituted phenols and evaluation of pK a from anodic voltammetry data. J Electroanal Chem 353:57–69CrossRefGoogle Scholar
  20. 20.
    Adamczyk M, Cornwell M, Huff J, Rege S, Venkata T, Rao S (1997) Novel 7-hydroxycoumarin based fluorescent labels. Bioorg Med Chem Lett 7(15):1985–1988CrossRefGoogle Scholar
  21. 21.
    Sabnis RW (2015) Handbook of fluorescent dyes and probes. John Wiley & Sons, Inc, Chap.82, p. 246Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • C. Barrientos
    • 1
  • P. Navarrete-Encina
    • 1
  • J. Carbajo
    • 2
  • J. A. Squella
    • 1
    Email author
  1. 1.Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ingeniería Química, Química Física y Química Orgánica, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations