Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1413–1419 | Cite as

Characterization of the purity of phytotherapics from secondary vegetal metabolism with small-scale coulometry applied to perillic acid

  • L. C. Norte
  • E. M. de Carvalho
  • M. R. R. Tappin
  • P. P. Borges
Original Paper


The use of pure materials in chemical analysis is currently in high demand due to the need to provide reliable measurement results. Phytotherapics are natural products that contain substances of secondary vegetal metabolism. Perillic acid, a monoterpenic acid with anti-inflammatory and anticancer properties, was the phytotherapic chosen to be analyzed in this work for purity by coulometry. Due to the low availability of perillic acid on the market and its high cost, the miniaturization of the coulometric technique was fundamental for characterizing such a substance. The volume of the supporting electrolyte and the mass of the analyte were the main parameters scaled. The coulometric measurement results were obtained by small-scale coulometry by using 3.0 mg of perillic acid (scale reduction of ×100). A mean purity of (94.2 ± 0.8)% (k = 2.13, for an approximately 95% confidence level) was obtained from five replicates. These studies aim in the future to develop the production of certified reference materials from natural products.


Characterization Small-scale coulometry Phytotherapic Perillic acid 



The author L. C. Norte acknowledges the Inmetro and the Fiocruz, where the studies are being developed.


  1. 1.
    Duetz WA, Bouwmeeste H, van Beilen JB, Witholt B (2003) Appl Microbiol and Biot 61:269–277CrossRefGoogle Scholar
  2. 2.
    Taverniers I, Van Bockstaele E, De Loose M (2004) Trends Anal Chem 23(7):480–490CrossRefGoogle Scholar
  3. 3.
    De Briève P, Dybkaer R, Fajgelj A, Hibbert DB (2011) Pure Appl Chem 83 10:1873-1935Google Scholar
  4. 4.
    Olivares IRB, Lopes FA (2012) Trends Anal Chem 35:109–121CrossRefGoogle Scholar
  5. 5.
    ISO Guide 35 (2017) Reference materials—guidance for characterization and assessment of homogeneity and stabilityGoogle Scholar
  6. 6.
    Milton MJT, Quinn TJ (2001) Metrologia 38:289–296CrossRefGoogle Scholar
  7. 7.
    Milton MJT (2013) Metrologia 50:158–163CrossRefGoogle Scholar
  8. 8.
    Szebellédy L, Somogyi D (1938) Die coulometrische Analyse als Präzisionsmethode. Fresenius Z Anal Chem 112:313–323Google Scholar
  9. 9.
    Bishop E (1975) Coulometric analysis. In: Wilson CL, Wilson DW (eds) Comprehensive analytical chemistry, vol IID. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Máriássy M, Pratt KW, Spitzer P (2009) Metrologia 46:199–213CrossRefGoogle Scholar
  11. 11.
    Curran DJ (1996) Controlled-current coulometry. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Dekker, New York, pp 739–768Google Scholar
  12. 12.
    Pratt KW (1994) Anal Chim Acta 289:135–142CrossRefGoogle Scholar
  13. 13.
    RDC 26/2014 (2014) Diário Oficial da União (DOU) 14.05.14 BrasilGoogle Scholar
  14. 14.
    Borges PP, Silva W Jr (2014) J Appl Electrochem 44:1411–1420CrossRefGoogle Scholar
  15. 15.
    Sato F, Fujihara M, Komiyama N, Kambe S, Ishii O (2005) Appl Phys Lett 87:264106CrossRefGoogle Scholar
  16. 16.
  17. 17.
    JCGM 100 (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. Accessed in 15.07.17
  18. 18.
    Ellison, SLR, Williams A (Eds) (2012) Eurachem/CITAC guide quantifying uncertainty in analytical measurement, Third edition, ISBN 978–0–948926-30-3 Available from
  19. 19.
    Saito T, Ihara T, Miura T, Yhamada Y, Chiba K (2011) Accred Qual Assur 16:421–428CrossRefGoogle Scholar
  20. 20.
    Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl Chem 74(5):835–855Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017
corrected publication March/2018

Authors and Affiliations

  • L. C. Norte
    • 1
  • E. M. de Carvalho
    • 1
  • M. R. R. Tappin
    • 1
  • P. P. Borges
    • 2
  1. 1.Fiocruz, FarmanguinhosRio de JaneiroBrazil
  2. 2.Chemical and Thermal Metrology Division, Electrochemistry LaboratoryNational Institute of Metrology, Quality and Technology—InmetroDuque de CaxiasBrazil

Personalised recommendations