Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1563–1570 | Cite as

Voltammetric and spectroscopic studies of the interaction between copper (II) ions with the pesticide carbendazim and its effect in the soil

  • Isis Marques Costa
  • Lúcia Codognoto
  • Eliana Maíra Agostini Valle
Original Paper
  • 185 Downloads

Abstract

The pesticide carbendazim (MBC) has nitrogen and oxygen in their structure which can interact with metal ions. This work evaluated the interaction between copper (II) ions with the pesticide carbendazim. The results obtained by cyclic voltammetry (CV) in 0.4 mol L−1 Britton-Robinson (BR) buffer (pH 4.0), under glass carbon electrode (GCE) to the MBC, showed an oxidation peak at 1.02 V and a reduction peak at 0.78 V vs Ag/AgCl, with characteristics of a quasi-reversible process controlled by the diffusion of the species in solution. For the Cu2+ metal ions, two reduction peaks were observed at − 0.26 and − 0.11 V and an oxidation peak at 0.04 V vs Ag/AgCl, with characteristics of a quasi-reversible process, controlled by the diffusion of the species in solution. In the interaction between carbendazim and copper metal ion, the formation of an oxidation peak around 0.60 V vs Ag/AgCl and a reduction peak around 0.08 V was observed, in a 1:1 ratio (Cu2+:MBC) in solution, suggesting that a new compound was formed. Complex formation was confirmed by UV-Vis spectroscopy, where changes were observed in the MBC absorption band and Cu2+ d-d band, suggesting the formation of a MBC-Cu complex. Analyses with the soil samples showed that after 30 min of the presence of the carbendazim solution in the soil, the pesticide had around 80% of its initial concentration adsorbed. When carbendazim is in the presence of the Cu2+ ion, about 62% of the pesticide is adsorbed, indicating that complexation influences adsorption of the species in the soil studied.

Keywords

Carbendazim Copper (II) complexes Glass carbon electrode Cyclic voltammetry 

Notes

Acknowledgements

The authors acknowledge CNPq, CAPES, and FAPESP for the financial support.

Supplementary material

10008_2017_3746_MOESM1_ESM.docx (142 kb)
ESM 1 (DOCX 142 kb)

References

  1. 1.
    Boudina A, Emmelin C, Baaliouamer A, Grenier-Loustalot MF, Chovelon JM (2003) Photochemical behavior of carbendazim in aqueous solution. Chemosphere 50:649–655CrossRefGoogle Scholar
  2. 2.
    BRASIL (2006) Normas gerais sobre o uso de agrotóxicos. EmbrapaGoogle Scholar
  3. 3.
    Huebra MJG, Hernández PH, Nieto O, Ballestero Y, Hernández LH (2000) Determination of carbendazim in soil samples by anodic stripping voltammetry using a carbon fiber ultramicroelectrode. Fresenius J Anal Chem 367:474–478CrossRefGoogle Scholar
  4. 4.
    Pavão AC, Silva RC, Barros KA (2014) Carcinogenicidade do Carbendazim e seus Metabólitos. Quím Nova 39:1329–1334Google Scholar
  5. 5.
    FundeCitrus (2016) Doenças e Pragas: Pinta Preta http://www.fundecitrus.com.br/doencas/pintapreta/12. Accessed 27 Apr 2017
  6. 6.
    FundeCitrus (2016) Doenças e Pragas: Podridão Floral http://www.funde citrus.com.br/doencas/podridao-floral/13. Accessed 27 Apr 2017
  7. 7.
    Época Nogócios (2012) EUA encontram fungicida proibido em suco de laranja brasileiro http://epocanegocios.globo.com/Revista/Common/0,,EMI288937-16418,00-EUA+ENCONTRAM+FUNGICIDA+PROIBIDO+EM+SUCO+DE+LARANJA+BRASILEIRO.html Accessed 13 Jun 2017
  8. 8.
    Fernandez M, Rodriguez R, Pico Y, Manes J (2001) Liquid chromatographic-mass spectrometric determination of post-harvest fungicides in citrus fruits. J Chromatogr A 912:301–310CrossRefGoogle Scholar
  9. 9.
    Mapa (2012) Câmara Setorial da Cadeia Produtiva Ata de Reunião ordinária n°30. 07/02/2012Google Scholar
  10. 10.
    Sodré FF, Lenzi E, Saraiva Da Costa AC (2001) Utilização de modelos físico-químicos de adsorção no estudo do comportamento do cobre em solos argilosos. Quim Nova 24:324–330CrossRefGoogle Scholar
  11. 11.
    Garcia AF, Rollemberg MC (2007) Determinação voltamétrica do herbicida glifosato em águas naturais utilizando eletrodo de cobre. Quim Nova 30:1592–1596CrossRefGoogle Scholar
  12. 12.
    Andrea MM, Peres TB, Luchini LC, Marcondes MA, Pettinelli JR A. Nakagawa LE (2001) Impact of long term applications of cotton pesticides on soil biological properties, dissipation of [14C]-methyl parathion and persistence of multipesticide residues. Int At Energ Agency – IAEA 15–36Google Scholar
  13. 13.
    Dewey KA, Gaw SK, Northcott GL, Lauren DR, Hackenburg S (2012) Soil Biol Biochem 52:64–74CrossRefGoogle Scholar
  14. 14.
    Filipi OMS, Vidal MM, Duarte AC, Santos EBH (2008) Influence of fulvic acids and copper ions on thiram determination in water. J Agric Food Chem 56:7347–7354CrossRefGoogle Scholar
  15. 15.
    Valle EMA, Santamaría C, Machado SAS, Fernandez JM (2010) Thiram and plicoram as entrapping agents for lead depicted by electrochemical methods. JBCS 21:1052–1959CrossRefGoogle Scholar
  16. 16.
    Liu Z, Liu S, Yin P, He Y (2012) Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion. Anal Chim Acta 745:78–84CrossRefGoogle Scholar
  17. 17.
    Ribeiro WF, Selva TMG, Lopes IC, Coelho ECS, Lemos SG, Abreu FC, Nascimento VB, Araujo MCU (2011) Electroanalytical determination of carbendazim by square wave adsorptive stripping voltammetry with a multiwalled carbon nanotubes modified electrode. Anal Methods 3:1202–1206CrossRefGoogle Scholar
  18. 18.
    Souza D, Machado SAS, Avaca LA (2003) Voltametria de onda quadrada. Primeira parte: Aspectos teóricos Quim Nova 26:81–89Google Scholar
  19. 19.
    Galli A, Souza D, Garbellini GS, Coutinho CFB, Mazo LH, Avaca LAM, Machado SAS (2006) Utilização de técnicas eletroanalíticas na determinação de pesticidas em alimentos. Quím Nova 29:105CrossRefGoogle Scholar
  20. 20.
    Souza D, Codognoto L, Malagutti AR, Toledo RA, Pedrosa VA, Oliveira RTS, Mazo LH, Avaca LA, Machado SAS (2004) Voltametria de onda quadrada. Segunda parte: Aplicações. Quím Nova 27:790–797CrossRefGoogle Scholar
  21. 21.
    Skoog DA, Holler FJ, Nieman TA (2002) Princípios de Análise Instrumental, 5ª edn. Bookman, São PauloGoogle Scholar
  22. 22.
    Pacheco WF, Semaan FS, Almeida VGK, Ritta AGSL, Aucélio RQ (2013) Voltametrias: Uma Breve Revisão Sobre os Conceitos. Rev Virtual Quim 5:516–537CrossRefGoogle Scholar
  23. 23.
    Brett CMA, Brett AMO (1994) Electrochemistry principles, methods and applications, OxfordGoogle Scholar
  24. 24.
    Wang J (2000) Study of electrode reactions. In: Analytical electrochemistry, 2nd edn, pp 28–59CrossRefGoogle Scholar
  25. 25.
    Gosser Jr KD (1993) Cyclic voltammetry: simulation and analysis of reaction mechanism. VCH Publisher 35-51; 97–99Google Scholar
  26. 26.
    Maximiano EM, Lima F, Cardoso CAL, Arruda GJ (2016) Incorporation of thermally activated zeolite into carbon paste electrodes for voltammetric detection of carbendazim traces in milk samples. J Appl Electrochem 46:713–723CrossRefGoogle Scholar
  27. 27.
    Santos MC, Machado SAS, Mascaro LH, Avaca LA (2000) Estudos da eletrodeposição de metais em regime de subtensão. Quím Nova 23:392–400CrossRefGoogle Scholar
  28. 28.
    Santos MC, Mascaro LH, SAS M (1998) Voltammetric and rotating ring-disk studies of underpotential deposition of Ag and Cu on polycrystalline Au electrodes in aqueous H2SO4. Electrochim Acta 43:2263–2272CrossRefGoogle Scholar
  29. 29.
    Nie M, Neodo S, Wharton JA, Cranny A, Harris NR, Wood RJK, Stokes KR (2016) Electrochemical detection of cupric ions with boron-doped diamond electrode for marine corrosion monitoring. Electrochim Acta 202:345–356CrossRefGoogle Scholar
  30. 30.
    PUBCHEM. CARBENDAZIM. https://pubchem.ncbi.nlm.nih.gov/ compound/Carbendazim#section=Related-Records. Accessed 01 Jun 2017
  31. 31.
    Mazellier P, Leroy E, Legube B (2002) Photochemical behavior of the fungicide carbendazim in dilute aqueous solution. J Photochem Photobiol A Chem 153:221–227CrossRefGoogle Scholar
  32. 32.
    Maximiano EM, Cardoso CA, Arruda GJ (2016) Detecção Eletroquímica de Carbendazim em Sucos de Frutas Cítricas Utilizando Eletrodo de Pasta de Carbono. Orbital: Electron J Chem 8:232–239Google Scholar
  33. 33.
    Ashrafi AM, Dordevic J, Guzsvany V, Svancara I, Trtic-Petrovic T, Purenovic M, Vytras K (2012) Trace determination of carbendazim fungicide using adsorptive stripping voltammetry with a carbon paste electrode containing tricresyl phosphate. Int J Electrochem Sci 7:9717–9731Google Scholar
  34. 34.
    Hernandez P, Ballesteros Y, Galan F, Hernandez L (1996) Determination of Carbendazim with a graphite electrode modified with silicone OV-17. Electroanalysis 8:941–946CrossRefGoogle Scholar
  35. 35.
    França RF, Oliveira HPM, Pedrosa VA, Codognoto L (2012) Electroanalytical determination of carbendazim and fenamiphos in natural waters using a diamond electrode. Diam Relat Mater 27:54–59CrossRefGoogle Scholar
  36. 36.
    Silva MFCG (1998) Voltametria Cíclica – Aplicações ao estudo de mecanismo de reações induzidas por transferência eletrônica. Soc Port Quím 70:20–23Google Scholar
  37. 37.
    Nakahata DH, Ribeiro MA, Corbi PP, Machado D, Lancelloti M, Lustri WR, Costa Ferreira AM, Formiga ALB (2017) Synthesis, characterization and preliminary antimicrobial assays of copper(II) complexes with 2-(imidazole-2-yl)heteroaryl ligands. Inorg Chim Acta.  https://doi.org/10.1016/j.ica.2017.01.015
  38. 38.
    Freitas LV, Moraes RS, Silva AM, Luz ER (2007) Uso da espectroscopia de absorção na região do UV-Visível para a determinação de sítios de coordenação nos complexos de cobre (II). XI Encontro da SBQ-Rio de Janeiro 81Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Isis Marques Costa
    • 1
  • Lúcia Codognoto
    • 1
  • Eliana Maíra Agostini Valle
    • 1
  1. 1.Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations