Skip to main content
Log in

Voltammetric studies of the interaction between lead metal ion and the methyl parathion pesticide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the interaction of the pesticide methyl parathion (MP) with the lead metal ion was evaluated using a carbon electrode reused from a zinc battery. MP showed a reduction peak around − 0.57 V, with characteristics of irreversible processes, followed by a redox pair at 0.02 and 0.04 V. For the Pb2+ ion was observed a redox pair with the peaks at − 0.65 and − 0.44 V, with characteristics of quasi-reversible process. The evaluation of the MP interaction with the metal ion was performed by anodic stripping voltammetry and by UV-Vis spectroscopy. The studies indicated the formation of a new species in solution with a stripping peak at − 0.60 V, as well as a pronounced effect on the stripping peak of the methyl parathion. Since this change is in the hydroxylamine redox couple, it suggests that the interaction is through the sulfur atom present in the parathion molecule. Through titration studies, was suggested a possible 1:2 Pb:MP stoichiometry for the complex formed. Langmuir linearization algorithms of titration data with the metal allowed us to calculate the stability constant for the Pb:MP complex (log K′ = 7.6).The confirmation of the interaction between the species in solution was evidenced by UV-Vis spectroscopy, with the reduction of the MP absorption band at 282 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Chen YF, Kao CL, Lee WK, Huang PC, Hsu CY, Kuei CH (2016) J Chin Chem Soc 63:1–7

    Article  CAS  Google Scholar 

  2. Kumar J, Souza SFD (2010) Biosens bioelectron 26:1292–1296

    Article  CAS  Google Scholar 

  3. ANVISA - Agencia Nacional de Vigilância Sanitária. http://portal.anvisa.gov.br/documents/10181/2858730/CONSULTA+P%C3%9ABLICA+N+262+G TOX.pdf/ e01d7f65-5f83-482e-b1e3-685560a029fd. Accessed  26 June  2017

  4. Jaffrezic-Renault N (2001) Sensors 1:60–74

    Article  Google Scholar 

  5. Wang Y, Qiu H, Hu S, Xu J (2010) Sens actuators B 147:587–592

    Google Scholar 

  6. Jeyapragasam T, Saraswathi R, Chen SM, Lou BS (2013) Int J Electrochem Sci 8:12353–12366

    CAS  Google Scholar 

  7. Fan S, Xiao F, Liu L, Zhao F, Zen B (2008) Sensor and actuators B 132:34–39

    Article  CAS  Google Scholar 

  8. Pan D, Ma S, Bo X, Guo L (2011) Microchim Acta 173:215–219

    Article  CAS  Google Scholar 

  9. Yao Y, Zhang L, Xu J, Wang X, Duan X, Wen Y (2014) J Electroanal Chem 713:1–8

    Article  CAS  Google Scholar 

  10. Strydom C, Robinson C, Pretorius E, Whitcutt JM, Marx J, Bornman MS (2006) Water SA 32(4):543–554

    CAS  Google Scholar 

  11. Moreira FR, Moreira JC (2004) Rev Panam Salud Publica 15(2):119–129

    Article  Google Scholar 

  12. Bosso ST, Enzweiler J (2008) Quim Nova 31(2):394–400

    Article  CAS  Google Scholar 

  13. Junior FB, Santos JET, Gerlach RF, Parsons PJ (2005) Environ Health Perspect 113(12):1669–1674

    Article  Google Scholar 

  14. Olympio KPK, Oliveira PV, Naozuka J, Cardoso MRA, Marques AF, Günther WMR, Bechara EJH (2010) Neurotoxicol Teratol 32:272–279

    Article  Google Scholar 

  15. Morante-Zarcero S, Pérez-Quintanilla D, Sierra I (2015) J Solid State Electrochem 19:2117–2127

    Article  CAS  Google Scholar 

  16. Salmanipour A, Ali MT (2011) J Solid State Electrochem 15:2695–2702

    Article  CAS  Google Scholar 

  17. Morales GR, Silva TR, Galicia L (2003) J Solid State Electrochem 7:355–360

    Article  Google Scholar 

  18. Raghu GK, Sampath S, Pandurangappa M (2012) J Solid State Electrochem 16:1953–1963

    Article  CAS  Google Scholar 

  19. Pinto L, Lemos SG (2014) Electroanalysis 26:299–305

    Article  CAS  Google Scholar 

  20. Simionca I, Arvinte A, Ardeleanu R, Pinteala M (2012) Electroanalysis 24:1–10

    Article  Google Scholar 

  21. Intarakamhang S, Schuhmann W, Schulte A (2013) J Solid State Electrochem 17:1535–1542

    Article  CAS  Google Scholar 

  22. Casali CA, Moterle DF, Rheinheimer DS, Brunetto G, Corcini ALM, Kaminski J,  Melo GWB (2008) R Bras Ci Solo 32:1479-1487

  23. Valle EMA, Santamaria C, Machado SAS, Fernandez JM (2010) J Braz Chem Soc 00:1–8

    Google Scholar 

  24. Zhao YG, Zheng XW, Huang ZY, Yang MM (2003) Anal Chim Acta 482:29–36

    Article  CAS  Google Scholar 

  25. Karuppiah C, Palanisamy S, Chen S, Emmanuel R, Ajmal Ali M, Muthukrishnan P, Prakash P, Al-Hemaid FMA (2014) J Solid State Electrochem 18:1847–1854

    Article  CAS  Google Scholar 

  26. Yin H, Zhou Y, Han R, Qiu Y, Ai S, Zhu L (2012) J Solid State Electrochem 16:75–82

    Article  CAS  Google Scholar 

  27. Ma J, Zhang W (2011) Microchim Acta 175:309-314

  28. Fedorczyk A, Ratajczak J, Kuzmych O, Skompska M (2015) J Solid State Electrochem 19:2849–2858

    Article  CAS  Google Scholar 

  29. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  30. Yazhen W, Hongxin Q, Siqian H, Junhui X (2010) Sen actuators B Chem 147:587–592

    Article  Google Scholar 

  31. Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods, and applications. Oxford University Press Inc., New York

    Google Scholar 

  32. Vanderaspoilden S, Christophe J, Doneux T, Buess-Herman C (2015) Electrochim Acta 162:156–162

    Article  CAS  Google Scholar 

  33. Van den Berg CMG, Kramer JR (1979) Anal Chim Acta 106:113–120

    Article  Google Scholar 

  34. Alves SA, Ferreira TCR, Migliorini FL, Baldan MR, Ferreira NG, Lanza MRV (2013) J Electroanal Chem 702:1–7

    Article  CAS  Google Scholar 

  35. Pearson RJ (1963) J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP and CNPq, Brazil, for scholarships and financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Codognoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, D.A., Valle, E.M.A. & Codognoto, L. Voltammetric studies of the interaction between lead metal ion and the methyl parathion pesticide. J Solid State Electrochem 22, 1549–1555 (2018). https://doi.org/10.1007/s10008-017-3745-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3745-6

Keywords

Navigation