Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1621–1628 | Cite as

Understanding electrochemical performance of Ni(OH)2 films: a study contributions to energy storage

  • L. Aguilera
  • Y. Leyet
  • E. Padrón-Hernández
  • R. R. Passos
  • L. A. Pocrifka
Original Paper
  • 126 Downloads

Abstract

Nanostructured Ni(OH)2 was grown on the surface of a Ti plate via electrodeposition method. Analytical methods were employed to characterize the structure, morphology, and electrochemical performance of the samples. A voltammetry detailed study was used to determine the different contributions to the total stored charge. Based on the electrochemical impedance spectroscopy study, the results are discussed in terms of complex capacitance and complex power. The relaxation time constant of the systems and capacitance values at low frequency for different potentials were determined from complex capacitance plots. The Ni(OH)2 sample exhibited excellent electrochemical performance at different current densities and good cycling ability, 99.3% of the initial capacity (951.5 mA h g−1) remains after 1000 cycles of charge-discharge.

Keywords

Electrochemical performance Complex capacitance Charge storage 

Notes

Acknowledgements

The authors would like to thank the Brazilian research funding institutions CNPq, FAPEAM and CAPES for financial support.

References

  1. 1.
    Badwal S, Giddey S, Munnings C, Bhatt A, Hollenkam A (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 79:1–28Google Scholar
  2. 2.
    Winter M, Brodd R (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  3. 3.
    Miller J, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  4. 4.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614CrossRefGoogle Scholar
  5. 5.
    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931CrossRefGoogle Scholar
  6. 6.
    Wang H, Casalongue H, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477CrossRefGoogle Scholar
  7. 7.
    Ramesh T, Jayashree R, Kamath P, Rodrigues S, Shukla A (2002) Effect of light weight supports on specific discharge capacity of β-nickel hydroxide. J Power Sources 104:295–298CrossRefGoogle Scholar
  8. 8.
    Pang H, Zhang B, Du J, Chen J, Zhang J, Li S (2012) Porous nickel oxide nanospindles with huge specific capacitance and long-life cycle. RSC Adv 2:2257–2261CrossRefGoogle Scholar
  9. 9.
    Oliva P, Leonardi J, Laurent J, Delmas C, Braconnier J, Figlarz M, Fievet F (1982) Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. J Power Sources 8:229–255CrossRefGoogle Scholar
  10. 10.
    Guan X, Deng J (2007) Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater Lett 61:621–625CrossRefGoogle Scholar
  11. 11.
    Li H, Yu M, Wang F, Liu P, Liang Y, Xiao J, Wang C, Tong Y, Yang G (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894CrossRefGoogle Scholar
  12. 12.
    Aguilera L, Leyet Y, Peña-Garcia R, Padrón-Hernández E, Passos RR, Pocrifka LA (2017) Cabbage-like a-Ni(OH)2 with a good long-term cycling stability and high electrochemical performances for supercapacitor applications. Chem Phys Lett 677:75–79CrossRefGoogle Scholar
  13. 13.
    Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299CrossRefGoogle Scholar
  14. 14.
    Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809CrossRefGoogle Scholar
  15. 15.
    Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM (2012) Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem Mater 24:2382–2390CrossRefGoogle Scholar
  16. 16.
    Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151CrossRefGoogle Scholar
  17. 17.
    Ardizzone S, Fregonara G, Trasatti S (1990) Inner and outer active surface of RuO electrodes. Electrochim Acta 35:263–267CrossRefGoogle Scholar
  18. 18.
    Yang C, Ying C, Li V, Li F, Chan KY (2013) Complex impedance with transmission line model and complex capacitance analysis of ion transport and accumulation in hierarchical core-shell porous carbons. J Electrochem Soc 160:H271–H278CrossRefGoogle Scholar
  19. 19.
    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300CrossRefGoogle Scholar
  20. 20.
    Segalini J, Daffos B, Taberna PL, Gogotsi Y, Simon P (2010) Qualitative electrochemical impedance spectroscopy study of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim Acta 55:7489–7494CrossRefGoogle Scholar
  21. 21.
    Cebeci FÇ, Geyik H, Sezer E, Sarac AS (2007) Synthesis, electrochemical characterization and impedance studies on novel thiophene-nonylbithiazole-thiophene comonomer. J Electroanal Chem 610:113–121CrossRefGoogle Scholar
  22. 22.
    Patil AM, Lokhande AC, Chodankar NR, Kumbhar VS, Lokhande CD (2016) Engineered morphologies of β-NiS thin films via anionic exchange process and their supercapacitive performance. Mater Des 97:407–416CrossRefGoogle Scholar
  23. 23.
    Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158:1523–1532CrossRefGoogle Scholar
  24. 24.
    Oz A, Hershkovitz S, Belman N, Gutelmacher ET, Tsur Y (2016) Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance. Solid State Ionics 288:311–314CrossRefGoogle Scholar
  25. 25.
    Singh A, Chandra A (2015) Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci Rep 5:15551CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • L. Aguilera
    • 1
  • Y. Leyet
    • 2
  • E. Padrón-Hernández
    • 3
  • R. R. Passos
    • 1
  • L. A. Pocrifka
    • 1
  1. 1.Department of Chemistry, Laboratory of Electrochemistry and EnergyUniversity Federal of AmazonasManausBrazil
  2. 2.Department of Materials EngineeringUniversity Federal of AmazonasManausBrazil
  3. 3.Department of PhysicsUniversity Federal of PernambucoRecifeBrazil

Personalised recommendations