Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1431–1438 | Cite as

Electrochemical sensor for estriol hormone detection in biological and environmental samples

  • Letícia Vieira Jodar
  • Fabrício Aparecido Santos
  • Valtencir Zucolotto
  • Bruno Campos Janegitz
Original Paper

Abstract

A stable conducting film for sensing using reduced graphene oxide (RGO), gold nanoparticles (GNPs), and potato starch (PS) is proposed. The characterization of the nanomaterials was obtained by ultraviolet and visible spectroscopy, dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, atomic force microscopy, and cyclic voltammetry. The voltammetric behavior of the RGO-GNPs-PS/GCE electrodes was studied in the presence of estriol and the results showed a high anodic peak current at 0.64 V. Under optimal conditions, an analytical curve was obtained, in which the anodic peak estriol was linear in the range from 1.5 to 22 μmol L−1, with a detection limit of 0.48 μmol L−1. The modified electrodes were applied for determination of estriol in environmental and biological samples. The proposed electrode was used for estriol determination in water and urine samples, which presented a recovery range from 92.1 to 106%, showing that RGO-GNPs-PS/GCE is a viable alternative for the detection of estriol and can be attractive for several electrochemical applications.

Keywords

Electrochemistry Potato starch Metal nanoparticles Estriol Sensors 

Notes

Acknowledgments

We would like to thank the financial support and scholarships from Brazilian funding agencies FAPESP (2015/19099-2), CNPq (2016/119884-0), and CAPES.

References

  1. 1.
    Lineback DR (1984) The starch granule organization and properties. Bakers Digest 3:16–21Google Scholar
  2. 2.
    Petersen K, Nielsen PV, Bertelsen G, Lawter M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68CrossRefGoogle Scholar
  3. 3.
    Han JH (2014) Innovations in food packaging. Elsevier Ltd: 624 SGoogle Scholar
  4. 4.
    Alvani K, Qi X, Tester RF, Snape CE (2011) Physico-chemical properties of potato starches. J Food Chem 125:958–965CrossRefGoogle Scholar
  5. 5.
    Simková D, Lachman J, Hamouz K, Vokál B (2013) Effect of cultivar, location and year on total starch, amylose: phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. J Food Chem 141:3872–3880CrossRefGoogle Scholar
  6. 6.
    Ballesteros CAS, Cancino J, Marangoni VS, Zucolotto V (2014) Nanostructured Fe3O4 satellite gold nanoparticles to improve biomolecular detection. Sens Actuators B Chem 198:377–383CrossRefGoogle Scholar
  7. 7.
    Shahrokhian S, Bayat M (2011) Pyrolytic graphite electrode modified with a thin film of graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim Acta 174:361–366CrossRefGoogle Scholar
  8. 8.
    Yang YJ, Li W, Chen X (2012) Highly enhanced electrocatalytic oxidation of glucose on Cu(OH)2/CuO nanotube arrays modified copper electrode. J Solid State Electrochem 16:2877–2881CrossRefGoogle Scholar
  9. 9.
    Liang X, Zhang X, Wang F, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18:3453–3461CrossRefGoogle Scholar
  10. 10.
    Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171CrossRefGoogle Scholar
  11. 11.
    Li S-J, Chen T-W, Xia N, Hou Y-L, Du J-J, Liu L (2013) Direct electrochemistry of glucose oxidase on sulfonated graphene/gold nanoparticle hybrid and its application to glucose biosensing. J Solid State Electrochem 17:2487–2494CrossRefGoogle Scholar
  12. 12.
    Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722CrossRefGoogle Scholar
  13. 13.
    Li S, He J, Zhang M, Zhang R, Lv X, Li S, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65CrossRefGoogle Scholar
  14. 14.
    Janegitz BC, Silva TA, Wong A, Ribovski L, Vicentini FC, Taboada Sotomayor MP, Fatibello-Filho O (2017) The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 89:224–233CrossRefGoogle Scholar
  15. 15.
    Novoselov KS, Greim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  16. 16.
    Gao C, Huang XJ (2013) Voltammetric determination of mercury(II). Trends Anal Chem 51:1–12CrossRefGoogle Scholar
  17. 17.
    Liu M, Liu C, Xie Y, Cao H, Zhao H, Zhang Y (2014) The evolution of surface chargeon graphene oxide during the reduction and its application in electroanalysis. Carbon 66:302–311CrossRefGoogle Scholar
  18. 18.
    Wang B, Yan S, Shi Y (2015) Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19:307–314CrossRefGoogle Scholar
  19. 19.
    Cruz SMA, Girão AF, Gonçalves G, Marques PAAP (2016) Graphene: the missing piece for cancer diagnosis? Sensors 1:137CrossRefGoogle Scholar
  20. 20.
    Boujakhrout A, Sánchez A, Díez P, Jimenez S, Martínez-Ruiz P, Árvarez MP, Pingarrón JM, Villalonga R (2015) Decorating graphene/nanogold with dextranbased polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors. J Mater Chem B 3:3518–3526CrossRefGoogle Scholar
  21. 21.
    Araque E, Arenas CB, Gamella M, Reviejo J, Villalonga R, Pingarrón JM (2014) Graphene-polyamidoamine dendrimer-Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. J Electroanal Chem 96:717–718Google Scholar
  22. 22.
    Meng L, Xia Y, Liu W, Zhang L, Zou P, Zhang Y (2015) Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim Acta 152:330–337CrossRefGoogle Scholar
  23. 23.
    Liu W, Li H, Xu C, Khatami Y, Banerjee K (2011) The chemistry of graphene oxide. Carbon 49:4122–4130CrossRefGoogle Scholar
  24. 24.
    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRefGoogle Scholar
  25. 25.
    Eda G, Mattevi C, Yamaguchi H, Kim HK, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem 113:15768–15771Google Scholar
  26. 26.
    Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157CrossRefGoogle Scholar
  27. 27.
    Baccarin M, Santos FA, Vicentini FC, Zucolotto V, Janegitz BC, Fatibello-Filho O (2017) Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem 799:436–443CrossRefGoogle Scholar
  28. 28.
    Valden M, Lai X, Goodmann DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRefGoogle Scholar
  29. 29.
    Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192CrossRefGoogle Scholar
  30. 30.
    Caetano FR, Felippe LB, Zarbin AJG, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sens Actuators B Chem 243:43–50CrossRefGoogle Scholar
  31. 31.
    Peng D, Hu B, Kang M, Wang M, He L, Zhang Z, Fang S (2016) Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II). Appl Surf Sci 390:422–429CrossRefGoogle Scholar
  32. 32.
    Perez C, Simões FR, Codognoto L (2016) Voltammetric determination of 17α-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem 20:2471–2478CrossRefGoogle Scholar
  33. 33.
    Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–284CrossRefGoogle Scholar
  34. 34.
    Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506CrossRefGoogle Scholar
  35. 35.
    Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW efluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558CrossRefGoogle Scholar
  36. 36.
    Hirai N, Nanba A, Koshio M, Kondo T, Morita M, Tatarazako N (2006) Feminization of Japanese medaka (Oryzias latipes) exposed to 17beta-estradiol: formation of testis-ova and sex-transformation during early-ontogeny. Aquat Toxicol 77:78–86CrossRefGoogle Scholar
  37. 37.
    Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133CrossRefGoogle Scholar
  38. 38.
    Gan P, Compton RG, Foord JS (2013) The voltammetry and electroanalysis of someestrogenic compounds at modified diamond electrodes. Electroanalysis 25:2423–2434CrossRefGoogle Scholar
  39. 39.
    Chen TS, Huang KL (2013) Effect of operating parameters on electrochemical degradation of estriol (E3). Int J Eletrochem Sci 8:6343–6353Google Scholar
  40. 40.
    Cesarino I, Hümmelgen IA (2015) An additional tool towards overcoming absence of specificity of carbon nanostructure-based electrochemical sensors—application to estriol and estradiol detection and distinction. J Solid State Electrochem 19:3045–3050CrossRefGoogle Scholar
  41. 41.
    López de Alda MJ, Barceló D (2001) Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by fully automated on-line solid-phase extraction–liquid chromatography–diode array detection. J Chromatogr A 91:203–210CrossRefGoogle Scholar
  42. 42.
    Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894CrossRefGoogle Scholar
  43. 43.
    Cesario I, Cincotto FH, Machado SAS (2015) A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sensors Actuators B Chem 210:453–459CrossRefGoogle Scholar
  44. 44.
    Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253–259CrossRefGoogle Scholar
  45. 45.
    Ochiai LM, Agustini D, Figueiredo-Filho ACS, Banks CE, Marcolino-Júnior LH, Bergamini MF (2017) Electroanalytical thred-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sensors Actuators B Chem 241:978–984CrossRefGoogle Scholar
  46. 46.
    Cincotto FH, Canevari TC, Machado SAS, Barrio MAR, Villalonga R, Pingarrón JM (2015) Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta 174:332–339CrossRefGoogle Scholar
  47. 47.
    Dimiev AM, Eigler S (2016) Graphene oxide: fundamentals and applications. John Wiley & Sons. Ltd: 439 SGoogle Scholar
  48. 48.
    Janegitz BC, dos Santos FA, Faria RC, Zucolotto V (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C 37:14–19CrossRefGoogle Scholar
  49. 49.
    Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  50. 50.
    Laube N, Mohr B, Hesse A (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth 233:237–374CrossRefGoogle Scholar
  51. 51.
    Haiss W (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  52. 52.
    Zhou Y (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956CrossRefGoogle Scholar
  53. 53.
    Everett DH (1988) Basic principles of colloid science. RSC: 243 SGoogle Scholar
  54. 54.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRefGoogle Scholar
  55. 55.
    Ensafi AA, Noroozi R, Zandi–Atashbar N, Rezaei B (2017) Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sens Actuators B Chem 245:980–987CrossRefGoogle Scholar
  56. 56.
    Sivasankaran U, Thomas A, Jose AR, Kumar KG (2017) Poly (bromophenol blue) gold nanoparticle composite: an efficient electrochemical sensing platform for uric acid. J Electrochem Soc 164:292–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Nature Sciences, Mathematics and EducationFederal University of São CarlosArarasBrazil
  2. 2.Nanomedicine and Nanotoxicology Group, Institute of PhysicsUniversity of São PauloSão CarlosBrazil

Personalised recommendations