Skip to main content
Log in

Electrochemical sensor for estriol hormone detection in biological and environmental samples

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A stable conducting film for sensing using reduced graphene oxide (RGO), gold nanoparticles (GNPs), and potato starch (PS) is proposed. The characterization of the nanomaterials was obtained by ultraviolet and visible spectroscopy, dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, atomic force microscopy, and cyclic voltammetry. The voltammetric behavior of the RGO-GNPs-PS/GCE electrodes was studied in the presence of estriol and the results showed a high anodic peak current at 0.64 V. Under optimal conditions, an analytical curve was obtained, in which the anodic peak estriol was linear in the range from 1.5 to 22 μmol L−1, with a detection limit of 0.48 μmol L−1. The modified electrodes were applied for determination of estriol in environmental and biological samples. The proposed electrode was used for estriol determination in water and urine samples, which presented a recovery range from 92.1 to 106%, showing that RGO-GNPs-PS/GCE is a viable alternative for the detection of estriol and can be attractive for several electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lineback DR (1984) The starch granule organization and properties. Bakers Digest 3:16–21

    Google Scholar 

  2. Petersen K, Nielsen PV, Bertelsen G, Lawter M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68

    Article  CAS  Google Scholar 

  3. Han JH (2014) Innovations in food packaging. Elsevier Ltd: 624 S

  4. Alvani K, Qi X, Tester RF, Snape CE (2011) Physico-chemical properties of potato starches. J Food Chem 125:958–965

    Article  CAS  Google Scholar 

  5. Simková D, Lachman J, Hamouz K, Vokál B (2013) Effect of cultivar, location and year on total starch, amylose: phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. J Food Chem 141:3872–3880

    Article  Google Scholar 

  6. Ballesteros CAS, Cancino J, Marangoni VS, Zucolotto V (2014) Nanostructured Fe3O4 satellite gold nanoparticles to improve biomolecular detection. Sens Actuators B Chem 198:377–383

    Article  CAS  Google Scholar 

  7. Shahrokhian S, Bayat M (2011) Pyrolytic graphite electrode modified with a thin film of graphite/diamond nano-mixture for highly sensitive voltammetric determination of tryptophan and 5-hydroxytryptophan. Microchim Acta 174:361–366

    Article  CAS  Google Scholar 

  8. Yang YJ, Li W, Chen X (2012) Highly enhanced electrocatalytic oxidation of glucose on Cu(OH)2/CuO nanotube arrays modified copper electrode. J Solid State Electrochem 16:2877–2881

    Article  CAS  Google Scholar 

  9. Liang X, Zhang X, Wang F, Xu M, Bao X (2014) Simultaneous determination of guanine and adenine on CuO shuttle-like nanocrystals/poly(neutral red) film on glassy carbon electrode. J Solid State Electrochem 18:3453–3461

    Article  CAS  Google Scholar 

  10. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  CAS  Google Scholar 

  11. Li S-J, Chen T-W, Xia N, Hou Y-L, Du J-J, Liu L (2013) Direct electrochemistry of glucose oxidase on sulfonated graphene/gold nanoparticle hybrid and its application to glucose biosensing. J Solid State Electrochem 17:2487–2494

    Article  CAS  Google Scholar 

  12. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    Article  CAS  Google Scholar 

  13. Li S, He J, Zhang M, Zhang R, Lv X, Li S, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65

    Article  CAS  Google Scholar 

  14. Janegitz BC, Silva TA, Wong A, Ribovski L, Vicentini FC, Taboada Sotomayor MP, Fatibello-Filho O (2017) The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens Bioelectron 89:224–233

    Article  CAS  Google Scholar 

  15. Novoselov KS, Greim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  16. Gao C, Huang XJ (2013) Voltammetric determination of mercury(II). Trends Anal Chem 51:1–12

    Article  Google Scholar 

  17. Liu M, Liu C, Xie Y, Cao H, Zhao H, Zhang Y (2014) The evolution of surface chargeon graphene oxide during the reduction and its application in electroanalysis. Carbon 66:302–311

    Article  Google Scholar 

  18. Wang B, Yan S, Shi Y (2015) Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19:307–314

    Article  CAS  Google Scholar 

  19. Cruz SMA, Girão AF, Gonçalves G, Marques PAAP (2016) Graphene: the missing piece for cancer diagnosis? Sensors 1:137

    Article  Google Scholar 

  20. Boujakhrout A, Sánchez A, Díez P, Jimenez S, Martínez-Ruiz P, Árvarez MP, Pingarrón JM, Villalonga R (2015) Decorating graphene/nanogold with dextranbased polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors. J Mater Chem B 3:3518–3526

    Article  CAS  Google Scholar 

  21. Araque E, Arenas CB, Gamella M, Reviejo J, Villalonga R, Pingarrón JM (2014) Graphene-polyamidoamine dendrimer-Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. J Electroanal Chem 96:717–718

    Google Scholar 

  22. Meng L, Xia Y, Liu W, Zhang L, Zou P, Zhang Y (2015) Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim Acta 152:330–337

    Article  CAS  Google Scholar 

  23. Liu W, Li H, Xu C, Khatami Y, Banerjee K (2011) The chemistry of graphene oxide. Carbon 49:4122–4130

    Article  CAS  Google Scholar 

  24. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  25. Eda G, Mattevi C, Yamaguchi H, Kim HK, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem 113:15768–15771

    CAS  Google Scholar 

  26. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  27. Baccarin M, Santos FA, Vicentini FC, Zucolotto V, Janegitz BC, Fatibello-Filho O (2017) Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J Electroanal Chem 799:436–443

    Article  CAS  Google Scholar 

  28. Valden M, Lai X, Goodmann DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  CAS  Google Scholar 

  29. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  30. Caetano FR, Felippe LB, Zarbin AJG, Bergamini MF, Marcolino-Junior LH (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sens Actuators B Chem 243:43–50

    Article  CAS  Google Scholar 

  31. Peng D, Hu B, Kang M, Wang M, He L, Zhang Z, Fang S (2016) Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II). Appl Surf Sci 390:422–429

    Article  CAS  Google Scholar 

  32. Perez C, Simões FR, Codognoto L (2016) Voltammetric determination of 17α-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem 20:2471–2478

    Article  CAS  Google Scholar 

  33. Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–284

    Article  CAS  Google Scholar 

  34. Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    Article  CAS  Google Scholar 

  35. Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW efluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  36. Hirai N, Nanba A, Koshio M, Kondo T, Morita M, Tatarazako N (2006) Feminization of Japanese medaka (Oryzias latipes) exposed to 17beta-estradiol: formation of testis-ova and sex-transformation during early-ontogeny. Aquat Toxicol 77:78–86

    Article  CAS  Google Scholar 

  37. Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133

    Article  CAS  Google Scholar 

  38. Gan P, Compton RG, Foord JS (2013) The voltammetry and electroanalysis of someestrogenic compounds at modified diamond electrodes. Electroanalysis 25:2423–2434

    Article  CAS  Google Scholar 

  39. Chen TS, Huang KL (2013) Effect of operating parameters on electrochemical degradation of estriol (E3). Int J Eletrochem Sci 8:6343–6353

    CAS  Google Scholar 

  40. Cesarino I, Hümmelgen IA (2015) An additional tool towards overcoming absence of specificity of carbon nanostructure-based electrochemical sensors—application to estriol and estradiol detection and distinction. J Solid State Electrochem 19:3045–3050

    Article  CAS  Google Scholar 

  41. López de Alda MJ, Barceló D (2001) Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by fully automated on-line solid-phase extraction–liquid chromatography–diode array detection. J Chromatogr A 91:203–210

    Article  Google Scholar 

  42. Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894

    Article  CAS  Google Scholar 

  43. Cesario I, Cincotto FH, Machado SAS (2015) A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sensors Actuators B Chem 210:453–459

    Article  Google Scholar 

  44. Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253–259

    Article  CAS  Google Scholar 

  45. Ochiai LM, Agustini D, Figueiredo-Filho ACS, Banks CE, Marcolino-Júnior LH, Bergamini MF (2017) Electroanalytical thred-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sensors Actuators B Chem 241:978–984

    Article  CAS  Google Scholar 

  46. Cincotto FH, Canevari TC, Machado SAS, Barrio MAR, Villalonga R, Pingarrón JM (2015) Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta 174:332–339

    Article  CAS  Google Scholar 

  47. Dimiev AM, Eigler S (2016) Graphene oxide: fundamentals and applications. John Wiley & Sons. Ltd: 439 S

  48. Janegitz BC, dos Santos FA, Faria RC, Zucolotto V (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C 37:14–19

    Article  CAS  Google Scholar 

  49. Hummers WS, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  50. Laube N, Mohr B, Hesse A (2001) Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines. J Cryst Growth 233:237–374

    Article  Google Scholar 

  51. Haiss W (2007) Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  52. Zhou Y (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956

    Article  CAS  Google Scholar 

  53. Everett DH (1988) Basic principles of colloid science. RSC: 243 S

  54. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  55. Ensafi AA, Noroozi R, Zandi–Atashbar N, Rezaei B (2017) Cerium(IV) oxide decorated on reduced graphene oxide, a selective and sensitive electrochemical sensor for fenitrothion determination. Sens Actuators B Chem 245:980–987

    Article  CAS  Google Scholar 

  56. Sivasankaran U, Thomas A, Jose AR, Kumar KG (2017) Poly (bromophenol blue) gold nanoparticle composite: an efficient electrochemical sensing platform for uric acid. J Electrochem Soc 164:292–297

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the financial support and scholarships from Brazilian funding agencies FAPESP (2015/19099-2), CNPq (2016/119884-0), and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Campos Janegitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodar, L.V., Santos, F.A., Zucolotto, V. et al. Electrochemical sensor for estriol hormone detection in biological and environmental samples. J Solid State Electrochem 22, 1431–1438 (2018). https://doi.org/10.1007/s10008-017-3726-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3726-9

Keywords

Navigation