Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1339–1347 | Cite as

Effect of the solvent on growth and properties of polyaniline-based composite films

  • Giuliana T. Franco
  • Lucas H. E. Santos
  • Carlos M. G. S. Cruz
  • Artur J. Motheo
Original Paper


In this study, we report on the electrosyntheses of polyaniline (PAni) and PAni/magnetite nanoparticle (PAni/Fe3O4-NP) composite films by a potentiodynamic method from water and ethanol solutions. The aim of the study is to evaluate the effect of the solvent on the electrochemical growth of these films. The growth cyclic voltammograms and the mass change variation (Δm), determined by the electrochemical quartz crystal microbalance technique, show that the polymer growth rate is lower in ethanol than in water (Δm in water is ca. 50% higher than in ethanol after 30 voltammetric cycles). As a consequence, the films grown from ethanol show a more compact and uniform morphology, as we observed with scanning electron microscopy. Furthermore, the formation of oxidation products is inhibited in ethanol. The PAni/Fe3O4-NP composite films electrosynthesized in ethanol showed enhanced electrochemical response than the composite films grown from water. This is attributed to the better dispersion of the nanoparticles in this solvent and consequently in the polymer matrix, as confirmed by the Δm value and the spectroscopic characterization. We conclude that electropolymerization from ethanol solution provides high-quality PAni and PAni/Fe3O4-NP composite films; the electrochemical and morphological properties of these films suggest that their use for corrosion protection is promising.


Polyaniline Magnetite nanoparticles Composite films Electropolymerization Solvent EQCM 



G.T. Franco and L.H.E. Santos are respectively grateful to the São Paulo Research Foundation (FAPESP, Process: 2014/15477-0) and to the Brazilian National Council for Scientific and Technological development (CNPq, Process: 140669/2014-0) for their scholarships. A.J. Motheo is also thankful to CNPq for the financial support.

Supplementary material

10008_2017_3704_MOESM1_ESM.docx (49 kb)
Online Resource 1 (a) Cyclic voltammogram (blue) and mass change vs. potential profile (red) for the Fe3O4-NP on Au substrate in the absence aniline (1st cycle). (b) Monitoring of the mass change variation with cycling. Conditions: aqueous 0.5 mol L-1 H2SO4; scan rate: 25 mV s-1 (DOCX 49 kb)
10008_2017_3704_MOESM2_ESM.docx (59 kb)
Online Resource 2 FTIR spectra of the PAni and PAni/magnetite films synthesized in different solvents. (a) PAni-w, (b) PAni-e, (c) PAni-w/Fe3O4-NP, and (d) PAni-e/Fe3O4-NP (DOCX 58 kb)
10008_2017_3704_MOESM3_ESM.docx (59 kb)
Online Resource 3 UV-Vis spectra of the PAni and PAni/magnetite films synthesized in different solvents. (a) PAni-w, (b) PAni-e, (c) PAni-w/Fe3O4-NP, and (d) PAni-e/Fe3O4-NP (DOCX 58 kb)


  1. 1.
    MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  2. 2.
    Heeger AJ (2001) Nobel Lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681–700CrossRefGoogle Scholar
  3. 3.
    Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484CrossRefGoogle Scholar
  4. 4.
    Ciric-Marjanovic G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47CrossRefGoogle Scholar
  5. 5.
    Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421CrossRefGoogle Scholar
  6. 6.
    Tallman DE, Spinks G, Dominis A, Wallace GC (2002) Electroactive conducting polymers for corrosion control, part 1. General introduction and a review of non-ferrous alloys. J Solid State Electrochem 6:73–84CrossRefGoogle Scholar
  7. 7.
    Geniès EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139–182CrossRefGoogle Scholar
  8. 8.
    Bláha M, Trchová M, Bober P, Morávková Z, Prokes J, Stejskal J (2017) Polyaniline: aniline oxidation with strong and weak oxidants under various acidity. Mater Chem Phys 194:206–218CrossRefGoogle Scholar
  9. 9.
    Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. In: Gomes AS (ed) New polymers for special applications. InTech, Rijeka, pp 251–312Google Scholar
  10. 10.
    Santos JR Jr, Malmonge JA, Silva AJGC, Motheo AJ, Mascarenhas YP, Mattoso LHC (1995) Characteristics of polyaniline electropolymerized in camphor sulfonic acid. Synth Met 69:141–142CrossRefGoogle Scholar
  11. 11.
    Motheo AJ, Santo JR Jr, Venancio EC, Mattoso LHC (1998) Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. Polymer 39:6977–6982CrossRefGoogle Scholar
  12. 12.
    Machado DS, Moraes SR, Motheo AJ (2006) Aspects of the chemical synthesis of PAni-DBSA and its properties. Mol Cryst Liq Cryst 447:215–222CrossRefGoogle Scholar
  13. 13.
    Gvozdenovic MM, Jugovic BZ, Stevanovic JS, Trisovic TL, Grgur BN (2011) Electrochemical polymerization of aniline. In: Schab-Balcerzak (ed) Electropolymerization. InTech, Rijeka, pp 77–96Google Scholar
  14. 14.
    Motheo AJ, Venancio EC, Mattoso LHC (1998) Polyaniline synthesized in propylene carbonate medium in the presence of di- and tri-chloroacetic acids. Part I. Polymer growth studies. Electrochim Acta 43:755–762CrossRefGoogle Scholar
  15. 15.
    Zhou S, Wu T, Kan J (2007) Effect of methanol on morphology of polyaniline. Eur Polym J 43:395–402CrossRefGoogle Scholar
  16. 16.
    Al-Ghamdi A, Al-Saigh ZY (2002) Surface and thermodynamic characterization of conducting polymers by inverse gas chromatography. I Polyaniline. J Chromatogr A 969:229–243CrossRefGoogle Scholar
  17. 17.
    Kan J, Lv R, Zhang S (2004) Effect of ethanol on properties of electrochemically synthesized polyaniline. Synth Met 145:37–42CrossRefGoogle Scholar
  18. 18.
    Anand J, Palaniappan S, Sathyanarayana DN (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23:993–1018CrossRefGoogle Scholar
  19. 19.
    Pud A, Ogurtsov N, Korzhenko A, Shapoval G (2003) Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog Polym Sci 28:1701–1753CrossRefGoogle Scholar
  20. 20.
    Santos LHE, Branco JSC, Guimaraes IS, Motheo AJ (2015) Synthesis in phytic acid medium and application as anticorrosive coatings of polyaniline-based materials. Surf Coat Tech 275:26–31CrossRefGoogle Scholar
  21. 21.
    Moraes SR, Motheo AJ (2006) PAni-CMC: preparation, characterization and application to corrosion protection. Mol Cryst Liq Cryst 448:261–267CrossRefGoogle Scholar
  22. 22.
    Pagotto JF, Recio FJ, Motheo AJ, Herrasti P (2016) Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection. Surf Coat Tech 289:23–28CrossRefGoogle Scholar
  23. 23.
    Aphesteguy JC, Jacobo SE (2004) Composite of polyaniline containing iron oxides. Phys B 354:224–227CrossRefGoogle Scholar
  24. 24.
    Kim JH, Fang FF, Choi HJ, Seo Y (2008) Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology. Mater Lett 62:2897–2899CrossRefGoogle Scholar
  25. 25.
    Araujo ACV, Oliveira RJ, Alves S, Rodrigues AR, Machado FLA, Cabral FAO, Azevedo WM (2010) Synthesis, characterization and magnetic properties of polyaniline-magnetite nanocomposites. Synth Met 160:685–690CrossRefGoogle Scholar
  26. 26.
    Haldorai Y, Nguyen VH, Pham QL, Shim JJ (2011) Nanostructured materials with conducting and magnetic properties: preparation of magnetite/conducting copolymer hybrid nanocomposites by ultrasonic irradiation. Compos Interfaces 18:259–274CrossRefGoogle Scholar
  27. 27.
    Gu HB, Huang YD, Zhang X, Wang Q, Zhu JH, Shao L, Haldolaarachchige N, Young DP, Wei SY, Guo ZH (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809CrossRefGoogle Scholar
  28. 28.
    Janaky C, Kormanyos A, Visy C (2011) Magnetic hybrid modified electrodes, based on magnetite nanoparticle containing polyaniline and poly(3,4-ethylenedioxythiophene). J Solid State Electrochem 15:2351–2359CrossRefGoogle Scholar
  29. 29.
    Pailleret A, Hien NTL, Thanh DTM, Deslouis C (2007) Surface reactivity of polypyrrole/iron oxide nanoparticles: electrochemical and CS-AFM investigations. J Solid State Electrochem 11:1013–1021CrossRefGoogle Scholar
  30. 30.
    Geniès EM, Lapkowski M (1987) Spectroelectrochemical evidence for an intermediate in the electropolymerization of aniline. J Electroanal Chem 236:189–197CrossRefGoogle Scholar
  31. 31.
    Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945–1951CrossRefGoogle Scholar
  32. 32.
    Cornell VM, Schwertmann U (1998) The iron oxides: structures, properties, reaction, occurrence and uses, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  33. 33.
    Eskandari H, Shariati MR (2011) Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples. Anal Chim Acta 704:146–153CrossRefGoogle Scholar
  34. 34.
    FIZ Karlsruhe Inorganic Crystal Structure Database. Collection code 633020. Accessed 23 may 2017
  35. 35.
    FIZ Karlsruhe Inorganic Crystal Structure Database. Collection code 247034. Accessed 23 may 2017
  36. 36.
    Khan US, Rahim A, Khan N, Muhammad N, Rehman F, Ahmad K, Iqbal J (2017) Aging study of the powdered magnetite nanoparticles. Mater Chem Phys 189:86–89CrossRefGoogle Scholar
  37. 37.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley-Interscience Publications, New YorkGoogle Scholar
  38. 38.
    Zhu Y, Wu Q (1999) Synthesis of magnetite nanoparticles by precipitation with forced mixing. J Nanopart Res 1:393–396CrossRefGoogle Scholar
  39. 39.
    Lee Y, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509CrossRefGoogle Scholar
  40. 40.
    Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17:2783–2788CrossRefGoogle Scholar
  41. 41.
    Reichardt C (2003) Solvents and solvent effects in organic chemistry. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    Brett CMA, Brett AMO (1993) Electrochemistry: principles, methods and applications. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Cruz CMGS, Ticianelli EA (1997) Electrochemical and ellipsometric studies of polyaniline films grown under cycling conditions. J Electroanal Chem 428:185–192CrossRefGoogle Scholar
  44. 44.
    Pud AA (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66:1–18CrossRefGoogle Scholar
  45. 45.
    Hillier AC, Ward MD (1992) Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media. Anal Chem 64:2539–2554CrossRefGoogle Scholar
  46. 46.
    Bácskai J, Kertész V, Inzelt G (1993) An electrochemical quartz crystal microbalance study of the influence of the pH and solution composition on the behaviour of poly(aniline) films. Electrochim Acta 38:393–397CrossRefGoogle Scholar
  47. 47.
    Torresi RM, Cordoba de Torresi SI, Gabrielli C, Keddam M, Takenouti H (1993) Quartz crystal microbalance characterization of electrochemical doping of polyaniline films. Synth Met 61:291–296CrossRefGoogle Scholar
  48. 48.
    Ferreira V, Cascalheira AC, Abrantes LM (2008) Electrochemical polymerisation of luminol with aniline: a new route for the preparation of self-doped polyanilines. Electrochim Acta 53:3803–3811CrossRefGoogle Scholar
  49. 49.
    Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2012) Ethanol. In: Elvers B (editor-in-chief) Ullmann’s encyclopedia of industrial chemistry, v.13. Wiley-VCH, WeinheimGoogle Scholar
  50. 50.
    Tang X, Jing X, Wang B, Wang F (1988) Infrared spectra of soluble polyaniline. Synth Met 24:231–238CrossRefGoogle Scholar
  51. 51.
    Silverstein RM, Webster FX, Kiemle DJ, Bryce DL (2014) Spectrometric identification of organic compounds. Wiley, New YorkGoogle Scholar
  52. 52.
    Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting redox states. Prog Polym Sci 23:277–324CrossRefGoogle Scholar
  53. 53.
    Zheng W, Min Y, MacDiarmid AG, Angelopoulos M, Liao Y-H, Epstein AJ (1997) Effect of organic vapors on the molecular conformation of non-doped polyaniline. Synth Met 84:63–64CrossRefGoogle Scholar
  54. 54.
    Jiang J, Li L, Zhu M (2008) Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React Funct Polym 68:57–62CrossRefGoogle Scholar
  55. 55.
    Xavier MG, Venancio EC, Pereira EC, Leite FL, Leite ER, MacDiarmid AG, Mattoso LHC (2008) Synthesis of nanoparticles and nanofibers of polyaniline by potentiodynamic electrochemical polymerization. J Nanosci Nanotech 8:1–4CrossRefGoogle Scholar
  56. 56.
    Venancio EC, Mattoso LHC, Motheo AJ (2001) Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids. J Braz Chem Soc 12:526–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Giuliana T. Franco
    • 1
  • Lucas H. E. Santos
    • 1
  • Carlos M. G. S. Cruz
    • 2
  • Artur J. Motheo
    • 1
  1. 1.São Carlos Institute of ChemistryUniversity of São PauloSao CarlosBrazil
  2. 2.Academic Department of Chemistry and BiologyFederal University of Technology of ParanaCuritibaBrazil

Personalised recommendations