Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1315–1319 | Cite as

Synthesis of Na2Ti3O7 nanoparticles by sonochemical method for solid state electrolyte applications

  • Y. Leyet
  • F. Guerrero
  • J. Anglada-Rivera
  • R. F. B. de Souza
  • W. R. Brito
  • L. Aguilera
  • L. A. Pocrifka
  • R. Peña-Garcia
  • E. Padrón-Hernández
  • J. de la Cruz Pérez
Original Paper

Abstract

Na2Ti3O7 ceramic materials have been widely used in sodium-ion battery applications with relative good results; however, there are still several studies that might be carried out in the improvement of the Na2Ti3O7 properties and the overall batteries’ performance. In this direction, we used sonochemical method following a thermal treatment in order to synthetized pure phase Na2Ti3O7 nanopowders. X-ray diffraction characterization revealed that Na2Ti3O7 is the primary phase in nanopowders and ceramic sample; although, a high level of amorphization was observed in the sonicated nanopowder without heat treatment process. Nanopowder-prepared ceramic sample showed a crystallite size of 50 nm after sintering at 900 °C for 1 h. The specific surface area, pore volume, and pore size were obtained from the B.E.T. measurements, being 51 m2 g−1, 0.07 cm3 g−1, and 55 Å, respectively. The capacitance values of the nanopowder-prepared ceramic sample were in the order of microfarad. The total energy of the system was used to determine relaxation time of the sample (τ 0 = 31 ms).

Keywords

Na2Ti3O7 Sonochemical method Electrical response Solid state electrolyte 

Notes

Acknowledgments

This work has been supported by the Brazilian Agencies CNPq, FINEP, FACEPE, FAPEAM, MCTI and CAPES (99999.008454/2014-00).

References

  1. 1.
    Kim KT, Ali G, Chung KY, Yoon CS, Yashiro H, Sun YK, Lu J, Amine K, Myung ST (2014) Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett 14:416–422Google Scholar
  2. 2.
    Shirpour M, Cabana J, Doeff M (2013) New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ Sci 6:2538–2547Google Scholar
  3. 3.
    Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu YS, Li H, Armand M, Ikuhara Y, Chen LQ (2013) Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun 4:1870Google Scholar
  4. 4.
    Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 3:856Google Scholar
  5. 5.
    Wenzel S, Hara T, Janek J, Adelhelm P (2011) Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 4:3342–3345Google Scholar
  6. 6.
    Zhang B, Yu Y, Liu Y, Huang ZD, He YB, Kim JK (2013) Percolation threshold of graphene nanosheets as conductive additive in Li4Ti5O12 anode of Li-ion batteries. Nanoscale 5:2100–2106Google Scholar
  7. 7.
    Senguttuvan P, Rousse G, Seznec V, Tarascon JM, Palacin MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111Google Scholar
  8. 8.
    Zarrabeitia M, Castillo-Martínez E, Lopez Del Amo JM, Eguía-Barrio A, Muñoz-Márquez MA, Rojo T, Casas-Cabanas M (2016) Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7. J Power Sources 324:378–387Google Scholar
  9. 9.
    Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53:5045–5050Google Scholar
  10. 10.
    Zhiming Z, Hongmei X, Fan Z, Xiaolong Z, Yongbing T (2016) Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for high-performance sodium-ion batteries. Electrochim Acta 211:430–436Google Scholar
  11. 11.
    Li M, Xiao X, Fan X, Huang X, Liu Y, Chen L (2017) Carbon coated sodium-titanate nanotube as an advanced intercalation anode material for sodium-ion batteries. J Alloys Compd 712:365–372Google Scholar
  12. 12.
    Ghosh S, Kee Y, Okada S, Barpanda P (2015) Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries. J Power Sources 296:276–281Google Scholar
  13. 13.
    Leyet Y, Guerrero F, Anglada-Rivera J, Wilson D, Peña-Garcia R, Delgado A, Guerra Y, Padrón-Hernández E, Pérez de la Cruz J (2017) Anomalous ferromagnetic response in Na2Ti3O7 nanopowder obtained by the sonochemical method. Mater Res Express 4:045010Google Scholar
  14. 14.
    Rudola A, Sharma N, Balaya P (2015) Introducing a 0.2 V sodium-ion battery anode: The Na2Ti3O7 to Na3-xTi3O7 pathway. Electrochem Commun 61:10–13Google Scholar
  15. 15.
    Leyet Y, Guerrero F, Pérez-Delfín E, Pérez de la Cruz J, Eiras JA (2012) Characterization of nanostructured ceramics prepared by both high energy ball milling and fast firing sintering processes. Phase Transit 85:136–148Google Scholar
  16. 16.
    Shen K, Wagemaker M (2014) Na2+xTi6O13 as potential negative electrode material for Na-ion batteries. Inorg Chem 53:8250–8256Google Scholar
  17. 17.
    Sauvet AL, Baliteau S, Lopez C, Fabry P (2004) Synthesis and characterization of sodium titanates Na2Ti3O7 and Na2Ti6O13. J Solid State Chem 177:4508–4515Google Scholar
  18. 18.
    Dynarowska M, Kotwiński J, Leszczynska M, Marzantowicz M, Krok F (2017) Ionic conductivity and structural properties of Na2Ti3O7 anode material. Solid State Ionics 301:35–42Google Scholar
  19. 19.
    Buchelli W, Jimenez R, Sanz J, Várez A (2012) The log(σ) vs. log(ω) derivate plot used to analyze the ac conductivity. Application to fast Li+ ion conductors with perovskite structure. Solid State Ionics 227:113–118Google Scholar
  20. 20.
    Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158:1523–1532Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Y. Leyet
    • 1
    • 2
  • F. Guerrero
    • 2
  • J. Anglada-Rivera
    • 3
  • R. F. B. de Souza
    • 4
  • W. R. Brito
    • 4
  • L. Aguilera
    • 4
  • L. A. Pocrifka
    • 4
  • R. Peña-Garcia
    • 5
  • E. Padrón-Hernández
    • 5
    • 6
  • J. de la Cruz Pérez
    • 7
  1. 1.Departamento de Engenharia de MateriaisUniversidade Federal do AmazonasManausBrazil
  2. 2.Departamento de FísicaUniversidade Federal do AmazonasManausBrazil
  3. 3.Instituto Federal de Educação Ciência e Tecnologia do AmazonasManausBrazil
  4. 4.Departamento de QuímicaUniversidade Federal do AmazonasManausBrazil
  5. 5.Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil
  6. 6.Programa de Pós Graduação em Ciência de MateriaisUniversidade Federal De PernambucoRecifeBrazil
  7. 7.ISQ- Instituto de Soldadura e QualidadePorto SalvoPortugal

Personalised recommendations