Journal of Solid State Electrochemistry

, Volume 22, Issue 5, pp 1303–1313 | Cite as

Carbon paste electrode modified with Fe3O4 nanoparticles and BMI.PF6 ionic liquid for determination of estrone by square-wave voltammetry

  • Fernanda Moreira
  • Tatiane de Andrade Maranhão
  • Almir Spinelli
Original Paper


A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L−1 and from 9.0 to 100.0 μmol L−1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L−1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.


Carbon paste electrode Fe3O4 nanoparticles Ionic liquid Estrone Pork meat Square-wave voltammetry 



The authors are grateful to the Brazilian government agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina) for the scholarship and financial support. We are also in debt with Central Laboratory of Electron Microscopy of Federal University of Santa Catarina (Florianópolis/SC, Brazil) due to the surface analyses and with LacBio (Laboratório de Catálise Biomimética) for providing the IL BMI.PF6.

Supplementary material

10008_2017_3678_MOESM1_ESM.doc (214 kb)
ESM 1 (DOC 214 kb).


  1. 1.
    Daneshvar L, Rounaghi G, E'shaghi Z, Chamsaz M, Tarahomi S (2016) Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensional graphene/MWCNT hybrid composite film. J Mol Liq 215:316–322CrossRefGoogle Scholar
  2. 2.
    Taei M, Salavati H, Hasanpour F, Habibollahi S, Baghlani H (2016) Simultaneous determination of ascorbic acid, acetaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode. Mater Sci Eng C 69:1–11CrossRefGoogle Scholar
  3. 3.
    Ensafi AA, Abarghoui MM, Rezaei B (2015) Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sens Actuators B: Chem 219:1–9CrossRefGoogle Scholar
  4. 4.
    Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369CrossRefGoogle Scholar
  5. 5.
    Mani V, Wu TY, Chen SM (2014) Iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite-modified glassy carbon electrode for the sensitive determination of nitrite. J Solid State Electrochem 18:1015–1023CrossRefGoogle Scholar
  6. 6.
    Heli H, Majdi S, Sattarahmady N, Parsaei A (2010) Electrocatalytic oxidation and sensitive detection of deferoxamine on nanoparticles of Fe2O3@NaCo[Fe(CN)6]-modified paste electrode. J Solid State Electrochem 14:1637–1647CrossRefGoogle Scholar
  7. 7.
    Yang S, Li G, Wang G, Deng D, Qu L (2015) A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of l-cysteine. J Solid State Electrochem 9:3613–3620CrossRefGoogle Scholar
  8. 8.
    Gholivand MB, Torkashvand M, Yavari E (2015) Electrooxidation behavior of warfarin in Fe3O4 nanoparticles modified carbon paste electrode and its determination in real samples. Mater Sci Eng C 48:235–242CrossRefGoogle Scholar
  9. 9.
    Yu C, Lo N, Cheng H, Tsuda T, Sakamoto T, Chen Y, Kuwabata S, Chen P (2014) An ionic liquid-Fe3O4 nanoparticles-graphite composite electrode used for nonenzymatic electrochemical determination of hydrogen peroxide. J Electroanal Chem 729:109–115CrossRefGoogle Scholar
  10. 10.
    Benvidi A, Jahanbani S (2016) Self-assembled monolayer of SH-DNA strand on a magnetic bar carbon paste electrode modified with Fe3O4@Ag nanoparticles for detection of breast cancer mutation. J Electroanal Chem 768:47–54CrossRefGoogle Scholar
  11. 11.
    Silveira JP, Piovesan JV, Spinelli A (2017) Carbon paste electrode modified with ferrimagnetic nanoparticles for voltammetric detection of the hormone estriol. Microchem J 133:22–30CrossRefGoogle Scholar
  12. 12.
    Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au–multi-walled carbon nanotubes–chitosan. J Solid State Electrochem 16:857–867CrossRefGoogle Scholar
  13. 13.
    Kingsley MP, Desai PB, Srivastava AK (2015) Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J Electroanal Chem 741:71–79CrossRefGoogle Scholar
  14. 14.
    Parsaei M, Asadi Z, Khodadoust S (2015) A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt(II)-Schiff base complex and magnetite nanospheres. Sens Actuators B: Chem 220:1131–1138CrossRefGoogle Scholar
  15. 15.
    Mohammadi N, Najafi M, Adeh NB (2017) Highly defective mesoporous carbon-ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sens Actuators B: Chem 243:838–846CrossRefGoogle Scholar
  16. 16.
    Arvand M, Hassannezhad M (2014) Magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater Sci Eng C 36:160–167CrossRefGoogle Scholar
  17. 17.
    Al-Zahrani E, Soomro MT, Bashami RM, Rehman AU, Danish E, Ismail IMI, Aslam M, Hameed A (2016) Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. J Environ Chem Eng 4:4330–4341CrossRefGoogle Scholar
  18. 18.
    Gerent GG, Spinelli A (2017) Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers. J Hazard Mater 330:105–115CrossRefGoogle Scholar
  19. 19.
    Baezzat MR, Banavand F, Fasihi F (2017) Electrooxidation study and highly sensitive voltammetric determination of alfuzosin employing multi-walled carbon nanotubes and the ionic liquid 1-hexylpyridinium hexafluorophosphate nanocomposite sensor. J Mol Liq 233:391–397CrossRefGoogle Scholar
  20. 20.
    Siddiquee S, Yusof NA, Salleh AB, Tan SG, Bakar FA (2012) Development of electrochemical DNA biosensor for Trichoderma harzianum based on ionic liquid/ZnO nanoparticles/chitosan/gold electrode. J Solid State Electrochem 16:273–282CrossRefGoogle Scholar
  21. 21.
    Casado-Carmona FA, Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M (2016) Magnetic nanoparticles coated with ionic liquid for the extraction of endocrine disrupting compounds from waters. Microchem J 128:347–353CrossRefGoogle Scholar
  22. 22.
    Chen Y, Huang Y, Guo D, Chen C, Wang Q, Fu Y (2014) A chiral sensor for recognition of DOPA enantiomers based on immobilization of β-cyclodextrin onto the carbon nanotube-ionic liquid nanocomposite. J Solid State Electrochem 18:3463–3469CrossRefGoogle Scholar
  23. 23.
    Babu RS, Prabhu P, Narayanan SS (2016) Facile immobilization of potassium-copper hexacyanoferrate nanoparticles using a room-temperature ionic liquid as an ionic binder and its application towards BHA determination. J Solid State Electrochem 20:1575–1583CrossRefGoogle Scholar
  24. 24.
    Monerris MJ, D’Eramo F, Arévalo FJ, Fernández H, Zon MA, Molina PG (2016) Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchem J 129: 71–77Google Scholar
  25. 25.
    Lahcen AA, Baleg AA, Baker P, Iwuoha E, Amine A (2017) Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-β-estradiol determination. Sens Actuators B: Chem 241:698–705CrossRefGoogle Scholar
  26. 26.
    Fonseca AP, Lima DLD, Esteves VI (2011) Degradation by solar radiation of estrogenic hormones monitored by UV–visible spectroscopy and capillary electrophoresis. Water Air Soil Pollut 215:441–447CrossRefGoogle Scholar
  27. 27.
    Perez C, Simões FR, Codognoto L (2015) Voltammetric determination of 17α-ethinylestradiol hormone in supply dam using BDD electrode. J Solid State Electrochem 20:2471–2478CrossRefGoogle Scholar
  28. 28.
    Ji L, Wang Y, Wu K, Zhang W (2016) Simultaneous determination of environmental estrogens: diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta 159:215–221CrossRefGoogle Scholar
  29. 29.
    Goh SXL, Duarahc A, Zhang L, Snyder SA, Lee HK (2016) Online solid phase extraction with liquid chromatography-tandem mass spectrometry for determination of estrogens and glucocorticoids in water. J Chromatogr A 1465:9–19CrossRefGoogle Scholar
  30. 30.
    Vanhaecke L, Bussche JV, Wille K, Bekaert K, Brabander HF (2011) Ultra-high performance liquid chromatography-tandem mass spectrometry in high-throughput confirmation and quantification of 34 anabolic steroids in bovine muscle. Anal Chim Acta 700:70–77CrossRefGoogle Scholar
  31. 31.
    Xu X, Liang F, Shi J, Zhao X, Liu Z, Wu L, Song Y, Zhang H, Wang Z (2013) Determination of hormones in milk by hollow fiber-based stirring extraction bar liquid-liquid microextraction gas chromatography mass spectrometry. Anal Chim Acta 790:39–46CrossRefGoogle Scholar
  32. 32.
    Wang J, Chen Z, Li Z, Yang Y (2016) Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples. Food Chem 204:135–140CrossRefGoogle Scholar
  33. 33.
    Sales RL, Rocha JLM, Bressan J (2015) Utilização de hormônios e antibióticos em produtos alimentícios de origem animal: aspectos gerais e toxicológicos. Nutrire 40:409–420CrossRefGoogle Scholar
  34. 34.
    Yan W, Li Y, Zhao L, Lin J (2009) Determination of estrogens and bisphenol A in bovine milk by automated on-line C30 solid-phase extraction coupled with high-performance liquid chromatography–mass spectrometry. J Chromatogr A 1216:7539–7545CrossRefGoogle Scholar
  35. 35.
    Hu Y, Fan Y, Li G (2012) Preparation and evaluation of a porous monolithic capillary column for microextraction of estrogens from urine and milk samples online coupled to high-performance liquid chromatography. J Chromatogr A 1228:205–212CrossRefGoogle Scholar
  36. 36.
    Albero B, Sánchez-Brunete C, Miguel E, Tadeo JL (2017) Application of matrix solid-phase dispersion followed by GC-MS/MS to the analysis of emerging contaminants in vegetables. Food Chem 217:660–667CrossRefGoogle Scholar
  37. 37.
    Flor S, Lucangioli S, Contin M, Tripodi V (2010) Simultaneous determination of nine endogenous steroids in human urine by polymeric-mixed micelle capillary electrophoresis. Electrophoresis 31:3305–3313CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Sun W, Chen XQY, Liu S, Gao H (2011) Application of chitosan/Fe3O4 microsphere-graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean lectin gene sequence. Talanta 87:106–112CrossRefGoogle Scholar
  40. 40.
    Nicholson RS, Shain I (1964) Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706–723CrossRefGoogle Scholar
  41. 41.
    Bard AJ, Faulkner L (2001) Electrochemical methods, fundamentals and applications. Wiley, New YorkGoogle Scholar
  42. 42.
    Jin G, Lin X (2005) Voltammetric behavior and determination of estrogens at carbamylcholine modified paraffin-impregnated graphite electrode. Electrochim Acta 50:3556–3562CrossRefGoogle Scholar
  43. 43.
    Luo L, Li F, Zhu L, Ding Y, Deng D (2013) Electrochemical sensing platform of natural estrogens based on the poly (l-proline)-ordered mesoporous carbon composite modified glassy carbon electrode. Sens Actuators B: Chem 187:78–83CrossRefGoogle Scholar
  44. 44.
    Brocenschi RF, Rocha-Filho RC, Li L, Swain GM (2014) Comparative electrochemical response of estrone at glassy-carbon, nitrogen-containing tetrahedral amorphous carbon and boron-doped diamond thin-film electrodes. J Electroanal Chem 712:207–214CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2007) Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes. Talanta 71:1031–1038CrossRefGoogle Scholar
  47. 47.
    Santos KD, Braga OC, Vieira IC, Spinelli A (2010) Electroanalytical determination of estriol hormone using a boron-doped diamond electrode. Talanta 80:1999–2006CrossRefGoogle Scholar
  48. 48.
    Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH, New YorkGoogle Scholar
  49. 49.
    Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253–259CrossRefGoogle Scholar
  50. 50.
    Brett CA, Brett AMO (1993) Electrochemistry principles, methods, and applications. New York, OxfordGoogle Scholar
  51. 51.
    Silva TR, Westphal E, Gallardo H, Vieira IC (2014) Ionic organic film sensor for determination of phenolic compounds. Electroanalysis 26:1801–1809CrossRefGoogle Scholar
  52. 52.
    Ribani M, Bottoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validação em métodos cromatográficos e eletroforéticos. Quim Nova 5:771–780CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fernanda Moreira
    • 1
  • Tatiane de Andrade Maranhão
    • 1
  • Almir Spinelli
    • 1
  1. 1.Grupo de Estudos de Processos Eletroquímicos e Eletroanalíticos, Departamento de Química, Centro de Ciências Físicas e Matemáticas—CFMUniversidade Federal de Santa Catarina—UFSC, Campus Universitário Reitor João David Ferreira LimaFlorianópolisBrazil

Personalised recommendations