Skip to main content

Advertisement

Log in

Electrochemistry of metal nanoparticles: the effect of substrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

It is shown that nanoparticles localized on a foreign solid electrode may display two opposite shifts of dissolution potential, namely, a shift toward either more positive or more negative values as compared with the equilibrium potential of M n+/M 0 or the potential of bulk metal electrooxidation. The observed phenomena are interpreted in view of three energy states of substance, which are realized depending on contribution of the surface Gibbs free energy (ΔG°) to the energy of the system. Literature data concerning different metal-substrate pairs and specially conducted experimental investigations of electrooxidation of gold nanoparticles (radius equal to 10 and 150 nm), which are localized on the surface of glassy carbon, bulk gold, and platinum electrodes are presented and discussed. A shift of maximum current potential of small nanoparticles oxidation toward more positive values is observed in this series. The oxidation potential of large nanoparticles is not affected by the nature of the substrate. In all cases, electrooxidation of gold nanoparticles occurs at the more negative potentials than those of the bulk gold electrooxidation. It is shown that depending on the nature of the substrate and nanoparticle size, the dominating effect is either interaction of nanoparticles with the substrate (ΔG° < 0) and electrochemical potential shifts toward positive values or impact of surface Gibbs free energy of nanoparticles (ΔG° > 0) into energy of the system and electrochemical potential shifts toward negative values. The validity of the proposed assumptions is confirmed by good correlation of literature and our experimental data with calculated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ivanova OS, Zamborini FP (2010) Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte. Anal Chem 82:5844–5850

    Article  CAS  Google Scholar 

  2. Ivanova OS, Zamborini FP (2010) Size-dependent electrochemical oxidation of silver nanoparticles. J Am Chem Soc 132:70–72

    Article  CAS  Google Scholar 

  3. Brainina KhZ, Galperin LG, Vikulova EV, Stozhko NYu, Myrzakaev AM, Timoshenkova OR, Kotov YuA (2011) Gold nanoparticles electrooxidation: theory and experiment. J Solid State Electrochem 15:1049–1056

    Article  CAS  Google Scholar 

  4. Brainina KhZ, Galperin LG, Piankova LA, Stozhko NYu, Myrzakaev AM, Timoshenkova OR (2011) Bismuth nanoparticles electrooxidation: theory and experiment. J Solid State Electrochem 15:2469–2475

    Article  CAS  Google Scholar 

  5. Brainina KhZ, Galperin LG, Kiryuhina TYu, Galperin AL, Stozhko NYu, Myrzakaev AM, Timoshenkova OR (2011) Silver nanoparticles electrooxidation: theory and experiment. J Solid State Electrochem. doi:10.1007/s10008-011-1583-5

  6. Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G (2010) Electrochemical stability of nanometer-scale Pt particles in acidic environments. J Am Chem Soc 132:596–600

    Article  CAS  Google Scholar 

  7. Tang L, Li X, Cammarata RC, Friesen C, Sieradzki K (2010) Electrochemical stability of elemental metal nanoparticles. J Am Chem Soc 132:11722–11726

    Article  CAS  Google Scholar 

  8. Lakbub J, Pouliwe A, Kamasah A, Yang C, Sun P (2011) Electrochemical behaviors of single gold nanoparticles. Electroanalysis 23:2270–2274

    Article  CAS  Google Scholar 

  9. Kolb DM, Ullmann R, Ziegler JC (1998) Electrochemical nanostructuring. Electrochim Acta 43:2751–2760

    Article  CAS  Google Scholar 

  10. Kolb DM, Engelmann GE, Ziegler JC (2000) On the unusual electrochemical stability of nanofabricated copper clusters. Angew Chem Int Ed 39:1123–1125

    Article  CAS  Google Scholar 

  11. Ng KH, Liu H, Penner RM (2000) Subnanometer silver clusters exhibiting unexpected electrochemical metastability on graphite. Langmuir 16(8):4016–4023

    Article  CAS  Google Scholar 

  12. Del Popolo MG, Leiva EPM, Mariscal M, Schmickler W (2003) The basis for the formation of stable metal clusters on an electrode surface. Nanotechnology 14:1009–1013

    Article  Google Scholar 

  13. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  14. Kolb DM, Przasnyski M, Gerisher H (1974) Underpotential deposition of metals and work function differences. J Electroanal Chem 54:25–38

    Article  CAS  Google Scholar 

  15. Swathirajan S, Bruckenstein S (1983) Thermodynamics and kinetics of underpotential deposition of metal monolayers on polycrystalline substrates. Electrochim Acta 28:865–877

    Article  CAS  Google Scholar 

  16. Brainina KhZ, Neyman E (1993) Electroanalytical stripping methods. Wiley, New York

    Google Scholar 

  17. Brainina KhZ, Galperin LG, Galperin AL (2010) Mathematical modeling and numerical simulation of metal nanoparticles electrooxidation. J Solid State Electrochem 14:981–988

    Article  CAS  Google Scholar 

  18. Plietht WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in surface enhanced raman scattering. J Phys Chem 86:3166–3170

    Article  Google Scholar 

  19. Plieth WJ (1985) The work function of small metal particles and its relation to electrochemical properties. Sur Sci 156:530–535

    Article  CAS  Google Scholar 

  20. Ivanova OS (2010) Size and composition dependent electrochemical oxidation and deposition of metal nanostructure. PhD Thesis. University of Louisville. USA

  21. Stromberg AG, Semchenko DP (1988) Fizicheskaya Khimiâ. Vysshaya shkola, Moskva

    Google Scholar 

  22. Lide DR (2008) In: Lide DR (ed) CRC handbook on chemistry and physics, 89th edn. Taylor and Francis, UK, p 2736

    Google Scholar 

  23. Pinegin SV (1965) Kontaktnaya prochnost' v mashinakh. Mashinostroenie, Moskva

    Google Scholar 

  24. Nikolskiî BP (ed) (1966) Spravochnik Khimika, vol 1. Khimiâ, Moskva, p 1006

    Google Scholar 

  25. Nikolskiî BP (ed) (1965) Spravochnik Khimika, vol 3. Khimiâ, Moskva, p 743

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Z. Brainina.

Additional information

“Our best regards to Nina Zacharchuk, our friend and recognized person in Electrochemistry and our best wishes to her for many years to come”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brainina, K.Z., Galperin, L.G. & Vikulova, E.V. Electrochemistry of metal nanoparticles: the effect of substrate. J Solid State Electrochem 16, 2357–2363 (2012). https://doi.org/10.1007/s10008-012-1721-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1721-8

Keywords

Navigation