Skip to main content
Log in

Electrical, electrochemical, and thermomechanical properties of perovskite-type (La1−x Sr x )1−y Mn0.5Ti0.5O3−δ (x = 0.15–0.75, y = 0–0.05)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Strontium additions in (La1−x Sr x )1−y Mn0.5Ti0.5O3−δ (x = 0.15–0.75, y = 0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223 K in the p(O2) range from 10−19 to 0.5 atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0 × 10−6 K−1 at 300–1370 K and oxygen pressures from 10−21 to 0.21 atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3−δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω × cm2 in humidified 10 % H2–90 % N2 atmosphere at 1073 K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Fu QX, Tietz F (2008) Fuel Cells 08:283

    Article  CAS  Google Scholar 

  2. Gong M, Liu X, Trembly J, Johnson C (2007) J Power Sources 168:289

    Article  CAS  Google Scholar 

  3. Sun C, Stimming U (2007) J Power Sources 171:247

    Article  CAS  Google Scholar 

  4. Tsipis EV, Kharton VV (2011) J Solid State Electrochem 15:1007

    Article  CAS  Google Scholar 

  5. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1367

    Article  CAS  Google Scholar 

  6. Kharton VV, Tsipis EV, Marozau IP, Viskup AP, Frade JR, Irvine JTS (2007) Solid State Ion 178:101

    Article  CAS  Google Scholar 

  7. Kolotygin VA, Tsipis EV, Shaula AL, Naumovich EN, Frade JR, Bredikhin SI, Kharton VV (2011) J Solid State Electrochem 15:313

    Article  CAS  Google Scholar 

  8. Fu QX, Tietz F, Stöver D (2006) J Electrochem Soc 153:D74

    Article  CAS  Google Scholar 

  9. Ovalle A, Ruiz-Morales JC, Canales-Vázquez J, Marrero-López D, Irvine JTS (2006) Solid State Ion 177:1997

    Article  CAS  Google Scholar 

  10. Kim JH, Miller D, Schlegl H, McGrouther D, Irvine JTS (2011) Chem Mater 23:3841

    Article  CAS  Google Scholar 

  11. Escudero MJ, Irvine JTS, Daza L (2009) J Power Sources 192:43

    Article  CAS  Google Scholar 

  12. Kharton VV, Shaula AL, Vyshatko NP, Marques FMB (2003) Electrochim Acta 48:1817

    Article  CAS  Google Scholar 

  13. Bredikhin IS, Napol’skii FS, Korovkin EV, Istomin SY, Antipov EV, Bredikhin SI (2009) Russ J Electrochem 45:434

    Article  CAS  Google Scholar 

  14. Tsipis EV, Kharton VV, Bashmakov IA, Naumovich EN, Frade JR (2004) J Solid State Electrochem 8:674

    Article  CAS  Google Scholar 

  15. Kaluzhskikh MS, Kazakov SM, Mazo GN, Istomin SYa, Antipov EV, Gippius AA, Fedotov Yu, Bredikhin SI, Liu Yi, Svensson G, Shen Z (2011) J Solid StateChem 184:698

    Article  CAS  Google Scholar 

  16. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  17. Kilner JA, De Souza RA, Fullarton IC (1996) Solid State Ion 86–88:703

    Article  Google Scholar 

  18. De Souza RA, Kilner JA, Walker JF (2000) Mater Lett 43:43

    Article  Google Scholar 

  19. Shannon RD (1976) Acta Cryst A 32:751

    Article  Google Scholar 

  20. Harwood MC (1955) Proc Phys Soc B 68:586

    Article  Google Scholar 

  21. West AR (1984) Solid state chemistry and its applications. Wiley, Chichester

    Google Scholar 

  22. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1039

    Article  CAS  Google Scholar 

  23. Mizusaki J (1992) Solid State Ion 52:79

    Article  CAS  Google Scholar 

  24. Goodenough JB, Zhou JS (2001) Transport properties. In: Goodenough JB (ed) Localized to itinerant electronic transition in perovskite oxides. Springer, Berlin, pp 17–113

    Chapter  Google Scholar 

  25. Marozau IP, Kharton VV, Viskup AP, Frade JR, Samakhval VV (2006) J Eur Ceram Soc 26:1371

    Article  CAS  Google Scholar 

  26. Cumming DJ, Kharton VV, Yaremchenko AA, Kovalevsky AV, Kilner JA (2011) J Am Ceram Soc 94:2993

    Article  CAS  Google Scholar 

  27. Hammami R, Harrouch Batis N, Batis H, Minot C (2009) Solid State Sci 11:885

    Article  CAS  Google Scholar 

  28. Backhaus-Ricoult M (2006) Solid State Ion 177:2195

    Article  CAS  Google Scholar 

  29. Zuev AYu, Tsvetkov DS (2010) Solid State Ion 181:557

    Article  CAS  Google Scholar 

  30. Kharton VV, Nikolaev AV, Naumovich EN, Vecher AA (1995) Solid State Ion 81:201

    Article  CAS  Google Scholar 

  31. Berenov AV, MacManus-Driscoll JL, Kilner JA (1999) Solid State Ion 122:41

    Article  CAS  Google Scholar 

  32. Kharton VV, Marques FMB (2002) Curr Opin Solid State Mater Sci 6:261

    Article  CAS  Google Scholar 

  33. Goodenough JB (2003) Ann Rev Mater Res 33:91

    Article  CAS  Google Scholar 

  34. Burmistrov I, Drozhzhin OA, Istomin SY, Sinitsyn VV, Antipov EV, Bredikhin SI (2009) J Electrochem Soc 156:B1212

    Article  CAS  Google Scholar 

  35. Lee HY, Cho WS, Oh SM, Wiemhöfer H-D, Göpel W (1995) J Electrochem Soc 142:2659

    Article  CAS  Google Scholar 

  36. Jiang SP (2007) J Solid State Electrochem 11:93

    Article  Google Scholar 

  37. Haider MA, McIntosh S (2009) J Electrochem Soc 156:B1369

    Article  CAS  Google Scholar 

  38. Lü MF, Tsipis EV, Waerenborgh JC, Yaremchenko AA, Kolotygin VA, Bredikhin S, Kharton VV (2012) J Power Sources 206:59

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (state contract 02.740.11.5214) and by FCT—Portugal (projects SFRH/BPD/28629/2006 and SFRH/BD/45227/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I. et al. Electrical, electrochemical, and thermomechanical properties of perovskite-type (La1−x Sr x )1−y Mn0.5Ti0.5O3−δ (x = 0.15–0.75, y = 0–0.05). J Solid State Electrochem 16, 2335–2348 (2012). https://doi.org/10.1007/s10008-012-1703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1703-x

Keywords

Navigation