Skip to main content
Log in

Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The serial Zr-modified lithiated vanadium oxides LiV3 − x Zr x O8 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) as cathode materials were prepared using a sol–gel method. The synthesized cathode materials have been characterized by X-ray diffraction, scanning electron microscopy, galvanostatic charge–discharge test, cyclic voltammetry, and electrochemical impedance spectroscopy. The results indicate that doped Zr ion does not destroy the lattice structure of LiV3O8, while enlarging the (100) plane spacing. The discharge–charge tests show that LiV2.94Zr0.06O8 has the best electrochemical properties. The LiV2.94Zr0.06O8 electrode exhibits a high discharge capacity of 269.7 mAh g−1 at a charge–discharge rate of 0.1 C in the voltage range of 1.8–4.0 V and maintains a stable capacity of 246.9 mAh g−1 within 50 cycles. AC results indicate after Zr4+ doping, the charge–transfer resistance and the resistance of lithium-ion diffusion reduce greatly compared to the undoped LiV3O8, which is favorable to the lithium-ion fast intercalation/deintercalation in bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. West K, Zachau C (1996) J Electrochem Soc 143:820–825

    Article  CAS  Google Scholar 

  2. Dai J, Li F, Gao Z, Siow K (1998) J Electrochem Soc 145:3057–3062

    Article  CAS  Google Scholar 

  3. Kannan A, Manthiram A (2006) J Power Sources 159:1405–1408

    Article  CAS  Google Scholar 

  4. Liu L, Jiao L, Zhang Y, Sun J, Yang L, Miao Y, Yuan H, Wang Y (2008) Mater Chem Phys 111:565–569

    Article  CAS  Google Scholar 

  5. Liu H, Wang Y, Wang K, Wang Y, Zhou H (2009) J Power Sources 192:668–673

    Article  CAS  Google Scholar 

  6. Ju S, Kang Y (2010) Electrochim Acta 55:6088–6092

    Article  CAS  Google Scholar 

  7. Yang G, Wang G, Hou W (2005) J Phys Chem B 109:11186–11196

    Article  CAS  Google Scholar 

  8. Pasquali M, Pistoia G (1991) Electrochim Acta 36:1549–1553

    Article  CAS  Google Scholar 

  9. Pistoia G, Wang G, Zane D (1995) Solid State Ionics 76:285–290

    Article  CAS  Google Scholar 

  10. Jiao L, Li H, Yuan H, Wang Y (2008) Mater Lett 62:3937–3939

    Article  CAS  Google Scholar 

  11. Feng C, Huang L, Guo Z, Wang J, Liu H (2007) J Power Sources 174:548–551

    Article  CAS  Google Scholar 

  12. Pouchko S, Ivanov S, Kulova T, Skundin A, Turevskaya E (2002) Solid State Ionics 151:129–140

    Article  CAS  Google Scholar 

  13. Zhao M, Jiao L, Yuan H, Feng Y, Zhang M (2007) Solid State Ionics 178:387–391

    Article  CAS  Google Scholar 

  14. Liu L, Jiao L, Sun J, Zhao M, Zhang Y, Yuan H, Wang Y (2008) Solid State Ionics 178:1756–1761

    Article  CAS  Google Scholar 

  15. Liu L, Jiao L, Sun J, Zhang Y, Zhao M, Yuan H, Wang Y (2008) Electrochim Acta 53:7321–7325

    Article  CAS  Google Scholar 

  16. Feng Y, Li Y, Hou F (2009) Mater Lett 63:1338–1340

    Article  CAS  Google Scholar 

  17. Liu Y, Zhou X, Guo Y (2009) Electrochim Acta 54:3184–3190

    Article  CAS  Google Scholar 

  18. Liu L, Jiao L, Sun L, Liu S, Yuan H, Wang Y (2009) Chin J Chem 27:1093–1098

    Article  CAS  Google Scholar 

  19. Jouanneau S, Gal La Salle A, Verbaere A, Guyomard D (2005) J Electrochem Soc 152:1660–1667

    Article  Google Scholar 

  20. Oh S, Lee S, Cho W, Cho B (2006) Electrochim Acta 51:3637–3644

    Article  CAS  Google Scholar 

  21. Kim S, Kim C (2009) J Electroceram 23:254–257

    Article  CAS  Google Scholar 

  22. Kawakita J, Katagiri H, Miura T, Kishi T (1997) J Power Sources 68:680–685

    Article  CAS  Google Scholar 

  23. West K, Zachau C, Skaarup S, Saidi M, Barker Y, OIsen I, Pynenburg R, Koksbang R (1996) J Electrochem Soc 141:820–825

    Article  Google Scholar 

  24. Zhang H, Tang Y, Shen J, Xin X, Cui L, Chen L, Ouyang C, Shi S, Chen L (2011) Appl Phys A 104:529–537

    Article  CAS  Google Scholar 

  25. Wu F, Wang L, Wu C, Bai Y, Wang F (2009) Mater Chem Phys 115:707–711

    Article  CAS  Google Scholar 

  26. Feng C, Wang S, Zeng R, Guo Z, Konstantinov K, Liu H (2008) J Power Sources 184:485–488

    Article  CAS  Google Scholar 

  27. Sakunthala A, Reddy MV, Selvasekarapandian S, Chowdari BVR, Christopher Selvin P (2010) J Phys Chem C 114:8099–8107

    Article  CAS  Google Scholar 

  28. Fey G, Chen J, Subramanian V, Osaka T (2002) J Power Sources 112:384–394

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports for this work were provided by the National Natural Science Foundation of China (grant #50974090, 50874074) and the Shenzhen Key Laboratory of New Lithium-ion Battery and Mesoporous Materials (20110201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Hu, S., Shi, C. et al. Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries. J Solid State Electrochem 16, 2135–2141 (2012). https://doi.org/10.1007/s10008-011-1630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1630-2

Keywords

Navigation