Superalkali-doped borazine and lithiated borazine complexes: diffuse excess electron and large first-hyperpolarizability

Abstract

A number of superalkali (M3O / M3S; M = Li, Na, K)-doped borazine and hexalithio borazine complexes are considered for the theoretical study of their electronic structure and quadratic polarizability. Electron-rich O/S atom of superalkali species remains very close to one boron atom of the ring through non-covalent interaction. The first-hyperpolarizability increases rather significantly upon superalkali doping. The chosen complexes possess diffuse excess electron which is located on the superpalkali moiety of borazine complexes and at the ring site of lithiated borazines. First-hyperpolarizability of M3O(S)@B3N3Li6 complexes are significantly larger than that of the corresponding M3O(S)@B3N3H6 complexes. The magnitude of first-hyperpolarizability of Li3S@B3N3Li6 is larger than that of Li3S@B3N3H6 by about three orders of magnitude.

Graphical abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

N/A

Code availability

N/A

References

  1. 1.

    Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242

    CAS  Article  Google Scholar 

  2. 2.

    He GS, Tan L-S, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Dalton LR, Steier WH, Robinson BH, Zhang C, Ren A, Garner S, Chen A, Londergan T, Irwin L, Carlson B et al (1999) From molecules to opto-chips: Organic electro-optic materials. J Mater Chem 9:1905–1920

    CAS  Article  Google Scholar 

  4. 4.

    Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chem Rev 94:243–278

    CAS  Article  Google Scholar 

  5. 5.

    Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Bre’das JL, Li J, Bublitzand GU, Boxer SG (1997) Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids. Science 276:1233

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Chen A, Murphy EJ (2012) Broadband Optical Modulators: Science,Technology. and Applications. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  7. 7.

    Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure−property relation in NLO responses of fractal antenna dendrimers. J Am Chem Soc 124:9648–9655

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photonics 4:518–526

    CAS  Article  Google Scholar 

  9. 9.

    Jiang N, Zuber G, Keinan S, Nayak A, Yang W, Therien MJ, Beratan DN (2012) Design of coupled porphyrin chromophores with unusually large hyperpolarizabilities. J Phys Chem C116:9724–9733

    Google Scholar 

  10. 10.

    Cesaretti A, Foggi P, Fortuna CG, Elisei F, Spalletti A, Carlotti B (2020) Uncovering structure−property relationships in push−pull chromophores: a promising route to large hyperpolarizability and two−photon absorption. J Phys Chem C 124(29):15739–15748

    CAS  Article  Google Scholar 

  11. 11.

    Wang Y-F, Qin T, Tang J-M, Liu Y-J, Xie M, Li J, Huang J, Li Z-R (2020) Novel inorganic aromatic mixed-valent superalkali electride CaN3Ca: an alkaline-earth-based high-sensitivity multi-state nonlinear optical molecular switch. Phys Chem Chem Phys 22:5985–5994

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Roy RS, Mondal A, Nandi PK (2017) First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals. J Mol Model 23:93

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Desce MB, Alain V, Midrier L, Wortmann R, Lebus S, Glania C, Kramer P, Fort A, Muller J, Barzoukas M (1997) Intramolecular charge transfer and enhanced quadratic optical non-linearities in push pull polyenes. J Photochem Photobiol A 105:115–121

    Article  Google Scholar 

  14. 14.

    Roy RS, Nandi PK (2015) Exploring bridging effect on first hyperpolarizability. RSC Adv 5:103729–103738

    CAS  Article  Google Scholar 

  15. 15.

    Meyers F, Marder SR, Pierce BM, Bredas JL (1994) Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation. J Am Chem Soc 116:10703–10714

    CAS  Article  Google Scholar 

  16. 16.

    Bai Y, Zhou Z-J, Wang J-J, Li Y, Wu D, Chen W, Li Z-R, Sun C-C (2013) New Acceptor–Bridge–Donor Strategy for Enhancing NLO Response with Long-Range Excess Electron Transfer from the NH2...M/M3O Donor (M = Li, Na, K) to Inside the Electron Hole Cage C20F19 Acceptor through the Unusual σ Chain Bridge (CH2)4. J Phys Chem A 117:2835–2843

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Roy RS, Nandi PK (2018) Electronic structure and large second-order non-linear optical property of COT derivatives – a theoretical exploration. Phys Chem Chem Phys 20:18744–18755

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Nakano M, Fukuda K, Champagne B (2016) Third-Order Nonlinear Optical Properties of Asymmetric Non-Alternant Open-Shell Condensed-Ring Hydrocarbons: Effects of Diradical Character, Asymmetricity, and Exchange Interaction. J Phys Chem C 120(2):1193–1207

    CAS  Article  Google Scholar 

  20. 20.

    Okuno K, Shigeta Y, Kishi R, Nakano M (2013) Photochromic switching of diradical character: design of efficient nonlinear optical switches. J Phys Chem Lett 4:2418–2422

    CAS  Article  Google Scholar 

  21. 21.

    Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Muhammad S, Xu HL, Liao Y, Kan YH, Su ZM (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833–11840

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Silveira O, Castro MA, Leão SA, Fonseca TL (2015) Second hyperpolarizabilities of the lithium salt of pyridazine Li–H3C4N2 and lithium salt electride Li–H3C4N2⋯Na2. Chem Phys Lett 633:241–246

    CAS  Article  Google Scholar 

  24. 24.

    Li ZJ, Li ZR, Wang FF, Luo C, Ma F, Wu D, Wang Q, Huang XR (2009) A Dependence on the Petal Number of the Static and Dynamic First Hyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-Doped Cyclic Polyamines. J Phys Chem A113:2961–2966

    Article  CAS  Google Scholar 

  25. 25.

    Marques S, Castro MA, Leão SA, Fonseca TL (2018) Electronic and vibrational hyperpolarizabilities of lithium substituted (Aza)benzenes and (Aza)naphthalenes. J Phys Chem A 122:7402–7412

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Sun W-M, Wu D, Li Y, Liu JY, He HM, Li ZR (2015) A theoretical study on novel alkaline earth-based excess electron compounds: unique alkalides with considerable nonlinear optical responses. Phys Chem Chem Phys 17:4524–4532

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Raptis SG, Papadopoulas MG, Sadlej A (2000) Hexalithiobenzene: a molecule with exceptionally high second hyperpolarizability. Phys Chem Chem Phys 2:3393–3399

    CAS  Article  Google Scholar 

  28. 28.

    Xu H-L, Li Z-R, Wu D, Ma F, Li Z-J, Gu FL (2009) Lithiation and Li-doped effects of [5]Cyclacene on the static first hyperpolarizability. J Phys Chem C 113:4984–4986

    CAS  Article  Google Scholar 

  29. 29.

    Zhong R-L, Sun S-L, Xu H-L, Qiu Y-Q, Su Z-M (2014) Multilithiation effect on the first hyperpolarizability of carbon–boron–nitride heteronanotubes: activating segment versus connecting pattern. J Phys Chem C118:14185–14191

    Google Scholar 

  30. 30.

    Khanna SN, Jena P (1995) Atomic clusters: building blocks for a class of solids. Phys Rev B: Condens Matter Mater Phys 51:13705–13716

    CAS  Article  Google Scholar 

  31. 31.

    Gutsev GL, Boldyrev AI (1982) DVM Xα calculations on the electronic structure of “superalkali” cations. Chem Phys Lett 92:262–266

    CAS  Article  Google Scholar 

  32. 32.

    Kerr JA (2000) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  33. 33.

    Lin Z, Lu T, Ding X-L (2017) A theoretical investigation on doping superalkali for triggering considerable nonlinear optical properties of Si12C12 nanostructure. J Comput Chem 38:1574–1582

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Li Z, Yu G, Zhang X, Huang X, Chen W (2017) Bonding the superalkali M3O (M = Li and K): an effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40 nanocage. Phys E 94:204–210

    CAS  Article  Google Scholar 

  35. 35.

    Wu CH, Kudoa H, Ihle HR (1979) Thermochemical properties of gaseous Li3O and Li2O2. J Chem Phys 70:1815–1820

    CAS  Article  Google Scholar 

  36. 36.

    Kudo H, Yokoyama K, Wu CH (1994) The stability and structure of the hyperlithiated molecules Li3S and Li4S: an experimental and ab initio study. J Chem Phys 101:4190

    CAS  Article  Google Scholar 

  37. 37.

    Sun W-M, Li X–H, Wu D, Li Y, He H–M, Li Z–R, Chena J–H, Li C–Y (2016) A theoretical study on superalkali-doped nanocages: unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalton Trans 45:7500–7509

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Zhang F–Y, Xu H–L, Su Z–M (2017) Superatoms-induced effects of phenalenyl π-dimer on NICS and NLO properties: not always enhancement. J Phys Chem C 121(37):20419–20425

    CAS  Article  Google Scholar 

  39. 39.

    Dabbagh HA, Shahraki M, Farrokhpour H (2014) Theoretical investigation of the borazine–melamine polymer as a novel candidate for hydrogen storage applications. Phys Chem Chem Phys 16:10519

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Schröder M (2010) Functional metal-organic frameworks: gas storage, Separation and Catalysis. Springer, Berlin

    Google Scholar 

  41. 41.

    Sham IHT, Kwok CC, Che CM, Zhu N (2005) Borazine materials for organic optoelectronic applications. Chem Commun (Camb) 28:3547

    Article  CAS  Google Scholar 

  42. 42.

    Bosdet MJD, Piers WE, Sorensen TS, Parvez M (2007) 10a-Aza-10b-borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties. Angew Chem Int Ed 46:4940

    CAS  Article  Google Scholar 

  43. 43.

    Dewar MJS, Kubba VP, Pettit R (1958) New heteroaromatic compounds. Part I. 9-Aza-10-boraphenanthrene. J Chem Soc 0:3073–3076

    CAS  Article  Google Scholar 

  44. 44.

    Campbell PG, Marwitz AJV, Liu S-Y (2012) Recent Advances in Azaborine Chemistry. Angew Chem Int Ed 51:6074

    CAS  Article  Google Scholar 

  45. 45.

    Otero N, Pouchan C, Karamanis P (2017) Quadratic nonlinear optical (NLO) properties of borazino (B3N3)-doped nanographenes. J Mater Chem C 5:8273–8287

    CAS  Article  Google Scholar 

  46. 46.

    Wang L, Wang W-Y, Qiu Y-Q, Lu H-Z (2015) Second-Order Nonlinear Optical Response of Electron Donor–Acceptor Hybrids Formed between Corannulene and Metallofullerenes. J Phys Chem C 119:24965–24975

    CAS  Article  Google Scholar 

  47. 47.

    Xu H-L, Li Z-R, Wu D, Wang B-Q, Li Y, Gu FL, Aoki Y (2007) Structures and Large NLO Responses of New Electrides: Li-Doped Fluorocarbon Chain. J Am Chem Soc 129:2967–2970

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Sarmah N, PKr B, Bania KK (2014) Substituent and solvent effects on the absorption spectra of cation−π complexes of benzene and Borazine: a theoretical study. J Phys Chem A 118:3760–3774

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Srivastava AK, Tiwari SN, Misra N (2017) Alkalized borazine: a simple recipe to design closed-shell superalkalis. Int J Quantum Chem 118:e25507

    Article  CAS  Google Scholar 

  50. 50.

    Baran JR, Hendrickson JC, Laude DA, Lagow JRJ (1992) Synthesis of hexalithiobenzene. J Organomet Chem 57:3759–3760

    CAS  Article  Google Scholar 

  51. 51.

    Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  52. 52.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Lisovenko AS, Timoshkin AY (2010) Donor−acceptor complexes of borazines. Inorg Chem 49:10357–10369

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Loh KP, Yang SW, Soon JM, Zhang H, Wu P (2003) Ab Initio Studies of Borazine and Benzene Cyclacenes and Their Fluoro-Substituted Derivatives. J Phys Chem A 107:5555–5560

    CAS  Article  Google Scholar 

  55. 55.

    Deshmukh V, Nagnathappa M, Kharat B, Chaudhari A (2014) Theoretical study of borazine and substituted borazines using density functional theory method. J Mol Liq 193:13–22

    CAS  Article  Google Scholar 

  56. 56.

    Gu J, Le Y-Q, Hu Y-Y, Li W-Q, Tian WQ (2014) Tuning the First Hyperpolarizabilities of Boron Nitride Nanotubes. ACS Photonics 1:928–935

    CAS  Article  Google Scholar 

  57. 57.

    Boyd RJ, Choi SC, Hale CC (1984) Electronic and structural properties of borazine and related molecules. Chem Phys Lett 112:136–141

    CAS  Article  Google Scholar 

  58. 58.

    Chakraborty A, Bandaru S, Das R, Duley S, Giri S, Goswami K, Mondal S, Pan S, Sena S, Chattaraj PK (2012) Some novel molecular frameworks involving representative elements. Phys Chem Chem Phys 14:14784–14802

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Giri S, Behera S, Jena P (2014) Superalkalis and superhalogens as building blocks of supersalts. J Phys Chem A 118:638–645

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Article  Google Scholar 

  61. 61.

    Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  62. 62.

    Chai JD, Gordon MH (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Ye J-T, Wang L, Wang H–Q, Chen Z–Z, Qiu Y–Q, Xie H-M (2017) Spirooxazine molecular switches with nonlinear optical responses as selective cation sensors. RSC Adv 7:642–650

    CAS  Article  Google Scholar 

  64. 64.

    Chakraborty D, Chattaraj PK (2016) Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes. Phys Chem Chem Phys 18:18811–18827

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544

    CAS  Article  Google Scholar 

  66. 66.

    Ullah F, Kosar N, Ayub K, Gilani MA, Mahmood T (2019) Theoretical study on a boron phosphide nanocage doped with superalkalis: novel electrides having significant nonlinear optical response. New J Chem 43:5727–5736

    CAS  Article  Google Scholar 

  67. 67.

    Hatua K, Mondal A, Nandi KP (2017) Static second hyperpolarizability of diffuse electron compound M2X (M = Li, na; X = H, F): Ab-initio study of basis set effect and electron correlation. Chem Phys Lett 686:1–6

    CAS  Article  Google Scholar 

  68. 68.

    Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    CAS  Article  Google Scholar 

  69. 69.

    Wang J-J, Zhou Z–J, Bai Y, Liu Z-B, Li Y, Wu D, Chen W, Li Z-R, Sun C–C (2012) The interaction between superalkalis (M3O, M = Na, K) and a C20F20 cage forming superalkali electride salt molecules with excess electrons inside the C20F20 cage: dramatic superalkali effect on the nonlinear optical property. J Mater Chem 22:9652–9657

    CAS  Article  Google Scholar 

  70. 70.

    Huang S, Liao K, Peng B, Luo Q (2016) On the Potential of Using the Al7 Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties. Inorg Chem 55:4421–4427

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Islam N, Chimni SS (2016) DFT investigation on nonlinear optical (NLO) properties of novel borazine derivatives. Comput Theor Chem 1086:58–66

    CAS  Article  Google Scholar 

  72. 72.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision B. Gaussian, Inc., Wallingford, p 02

    Google Scholar 

  73. 73.

    Bader RFW (1994) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  74. 74.

    Gibbs GV, Boisen MB, Beverly LL, Rosso KM (2001) A computational quantum chemical study of the bonded interactions in earth materials and structurally and chemically related molecules. In: Cygan RT, Kubicki JD (eds) Molecular Modeling Theory: Applications in the Geosciences, vol 42. Mineralogical Society of America, Washington, p 345

    Google Scholar 

  75. 75.

    Banerjee P, Hatua K, Mondal A, Nandi PK (2019) Substituent effects at nitrogen/phosphorus atoms of dialkaline earth metal complexes: excess electron and large second-hyperpolarizability. Int J Quantum Chem 119:1–15

    Article  CAS  Google Scholar 

  76. 76.

    Mondal A, Hatua K, Roy RS, Nandi PK (2017) Successive lithiation of acetylene, ethylene and benzene: a comprehensive computational study of large static second hyperpolarizability. Phys Chem Chem Phys 19:4768

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Mayers F, Marder SR, Perry JW (1998) Introduction to the nonlinear optical properties of organic materials. In: Interrante LV, Hampden-Smith MJ (eds) Chemistry of advanced materials. Wiley-VCH, New York, pp 207–269

    Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed to the present work by giving their own conception and design. The computational tasks, tabulation of results, and appropriate theoretical justification/analysis were performed by Ria Sinha Roy, Subhadip Ghosh and Kaushik Hatua. The manuscript in the final form was checked and prepared by Ria Sinha Roy and Prasanta K. Nandi. All authors gave their specific scientific inputs and suggestions to improve the quality of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prasanta K. Nandi.

Ethics declarations

Ethics approval and consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The geometrical parameters, NBO calculated atomic charges, mean polarizability, first- hyperpolarizability and TDDFT calculated results are reported in Tables S1, S2, S3, S4, S5, S6, S7, S8, S9 and S10, respectively. The optimized structures of superalkali species are shown in Fig. S1 in this section. (DOCX 94 kb) (DOCX 94 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, R.S., Ghosh, S., Hatua, K. et al. Superalkali-doped borazine and lithiated borazine complexes: diffuse excess electron and large first-hyperpolarizability. J Mol Model 27, 74 (2021). https://doi.org/10.1007/s00894-021-04688-2

Download citation

Keywords

  • Superalkali-doped borazine and lithiated borazine complexes
  • Diffuse excess electron
  • Spectroscopic properties
  • Large first-hyperpolarizability