Skip to main content
Log in

Comment on “Theoretical investigation on bond and spectrum of cyclo[18]carbon (C18) with sp-hybridized”

  • Short comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, Shuhong Xu et al. reported theoretical calculation of molecular structure, bonding, aromaticity, electron delocalization, and electronic spectrum of cyclo[18]carbon in J. Mol. Model., 26, 111 (2020). Due to inappropriate consideration of calculation strategy, misunderstanding of some analysis methods and concepts, and some errors in the data, there are misleading statements and unconvincing conclusions in their paper. Here, we will point out inadequacies of Shuhong Xu’s paper and put forward our own views. The contents of this comment will also help those who are studying cyclo[18]carbon to better understand this system and its analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

N/A

References

  1. Kaiser K, Scriven LM, Schulz F, Gawel P, Gross L, Anderson HL (2019) An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365:1299–1301. https://doi.org/10.1126/science.aay1914

    Article  CAS  PubMed  Google Scholar 

  2. Xu S, Liu F, Xu J, Cui Y, Wang C (2020) Theoretical investigation on bond and spectrum of cyclo[18] carbon (C18) with sp-hybridized. J. Mol. Model. 26:111. https://doi.org/10.1007/s00894-020-4344-5

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Lu T, Chen Q (2021) Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: focusing on molecular adsorption and stacking. Carbon 171:514–523. https://doi.org/10.1016/j.carbon.2020.09.048

    Article  CAS  Google Scholar 

  4. Lu T, Chen Q (2021) Ultrastrong regulation effect of electric field on all-carboatomic ring, cyclo[18]carbon. ChemPhysChem. https://doi.org/10.1002/cphc.202000903

  5. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: bonding character, electron delocalization, and aromaticity. Carbon 165:468–475. https://doi.org/10.1016/j.carbon.2020.04.099

    Article  CAS  Google Scholar 

  6. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165:461–467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  7. Lu T, Chen Q, Liu Z (2019) A thorough theoretical exploration of intriguing characteristics of cyclo[18]carbon: geometry, bonding nature, aromaticity, weak interaction, reactivity, excited states, vibrations, molecular dynamics and various molecular properties. ChemRxiv. https://doi.org/10.26434/chemrxiv.11320130

  8. Liu Z, Lu T, Chen Q (2020) Vibrational spectra and molecular vibrational behaviors of all-carboatomic rings, cyclo[18]carbon and its analogues. Chem.-Asian J.16:56–63. https://doi.org/10.1002/asia.202001228

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2016) Gaussian 16 A.03, Wallingford, CT

  10. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  11. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  12. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chem. Accounts 28:213–222

    Article  CAS  Google Scholar 

  13. Jensen F (2017) Introduction to computational chemistry3rd edn. John Wiley & Sons, West Sussex

    Google Scholar 

  14. Yu D, Stuyver T, Rong C, Alonso M, Lu T, De Proft F et al (2019) Global and local aromaticity of acenes from the information-theoretic approach in density functional reactivity theory. Phys. Chem. Chem. Phys. 21:18195–18210. https://doi.org/10.1039/C9CP01623F

    Article  CAS  PubMed  Google Scholar 

  15. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100:5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  16. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7:3297–3305. https://doi.org/10.1039/b508541a

    Article  CAS  PubMed  Google Scholar 

  17. Dunning JTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 90:1007–1023

    Article  CAS  Google Scholar 

  18. Mayer I (1983) Charge, Bond Order and Valence in the AB initio SCF Theory. Chem. Phys. Lett. 97:270–274. https://doi.org/10.1016/0009-2614(83)80005-0

    Article  CAS  Google Scholar 

  19. Lu T, Chen F (2013) Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J. Phys. Chem. A 117:3100–3108. https://doi.org/10.1021/jp4010345

    Article  CAS  PubMed  Google Scholar 

  20. Pipek J, Mezey PG (1989) A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90:4916–4926. https://doi.org/10.1063/1.456588

    Article  CAS  Google Scholar 

  21. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  22. Lu T, Chen F (2011) Meaning and functional form of the electron localization function. Acta Phys. -Chim. Sin. 27:2786–2792. https://doi.org/10.3866/PKU.WHXB20112786

    Article  CAS  Google Scholar 

  23. Lu T, Chen Q (2018) Revealing molecular electronic structure via analysis of valence Electron density. Acta Phys. -Chim. Sin. 34:503–513. https://doi.org/10.3866/pku.Whxb201709252

    Article  CAS  Google Scholar 

  24. Weinhold F (1998) Natural Bond Orbital Methods. In: Schleyer PVR (ed) Encyclopedia of Computational Chemistry, vol 2. John Wiley & Sons, West Sussex, pp 1792–1811

    Google Scholar 

  25. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118:6317–6318. https://doi.org/10.1021/ja960582d

    Article  CAS  PubMed  Google Scholar 

  26. Fallah-Bagher-Shaidaei H, Wannere CS, Corminboeuf C, Puchta R, Schleyer PVR (2006) Which NICS aromaticity index for planar π rings is best? Org. Lett. 8:863–866. https://doi.org/10.1021/ol0529546

    Article  CAS  PubMed  Google Scholar 

  27. Klod S, Kleinpeter E (2001) Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—application in conformational and configurational analysis. J. Chem. Soc. Perkin Trans. 2:1893–1898. https://doi.org/10.1039/B009809O

    Article  Google Scholar 

  28. Dai C, Chen D, Zhu J (2020) Achieving adaptive aromaticity in Cyclo[10]carbon by screening Cyclo[n]carbon (n=8−24). Chem.-Asian J. 15:2187–2191. https://doi.org/10.1002/asia.202000528

    Article  CAS  PubMed  Google Scholar 

  29. Charistos ND, Muñoz-Castro A (2020) Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22:9240–9249. https://doi.org/10.1039/D0CP01252A

    Article  CAS  PubMed  Google Scholar 

  30. Bader FW (1994) Atoms in molecules: a quantum theory. New York, Oxford University Press

    Google Scholar 

  31. Lu T, Chen Q (2020) A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Accounts 139:25. https://doi.org/10.1007/s00214-019-2541-z

    Article  CAS  Google Scholar 

  32. Giambiagi M, de Giambiagi M, Mundim K (1990) Definition of a multicenter bond index. Struct. Chem. 1:423–427. https://doi.org/10.1007/bf00671228

    Article  CAS  Google Scholar 

  33. Sundholm D, Fliegl H, Berger RJF (2016) Calculations of magnetically induced current densities: theory and applications. WIREs Comput. Mol. Sci. 6:639–678. https://doi.org/10.1002/wcms.1270

    Article  CAS  Google Scholar 

  34. Geuenich D, Hess K, Köhler F, Herges R (2005) Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105:3758–3772. https://doi.org/10.1021/cr0300901

    Article  CAS  PubMed  Google Scholar 

  35. Bredas J-L (2014) Mind the gap! Mater. Horiz. 1:17–19. https://doi.org/10.1039/C3MH00098B

    Article  CAS  Google Scholar 

  36. Civalleri B, Presti D, Dovesi R, Savin A (2012) On choosing the best density functional approximation. Chemical Modelling: Applications and Theory Volume 9, The Royal Society of Chemistry, vol 9, pp 168–185

    Chapter  Google Scholar 

  37. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  38. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72:650–654

    Article  CAS  Google Scholar 

  39. Rasmussen S (2021) Low-bandgap polymers. In: Kobayashi S, Müllen K (eds) Encyclopedia of Polymeric Nanomaterials. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–13

    Google Scholar 

  40. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82:284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  41. Nandi A, Solel E, Kozuch S (2020) Carbon tunneling in the automerization of cyclo[18]carbon. Chem.-Eur. J. 26:625–628. https://doi.org/10.1002/chem.201904929

    Article  CAS  PubMed  Google Scholar 

Download references

Code availability

Gaussian 16 A.03, Multiwfn 3.8(dev).

Author information

Authors and Affiliations

Authors

Contributions

Zeyu Liu: Investigation, and writing - review and editing

Tian Lu: Conceptualization, Investigation, Software, and writing - original draft

Qinxue Chen: Validation and writing - review and editing

Corresponding author

Correspondence to Tian Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

Publication is consented by all authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lu, T. & Chen, Q. Comment on “Theoretical investigation on bond and spectrum of cyclo[18]carbon (C18) with sp-hybridized”. J Mol Model 27, 42 (2021). https://doi.org/10.1007/s00894-021-04665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04665-9

Keywords

Navigation